{ "metadata": { "name": "", "signature": "sha256:31450cb4fbdeff508f73b1f734eeeccc850933334f8ee10004b73433a5bc86e4" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 9: Cells and Batteries" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.1: page 166:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "\n", "#given data :\n", "n=20;# dry cells of emf\n", "E=1.5;# emf in volts\n", "R=5; # external resistance in ohm\n", "r=0.5;# internal resistance in ohm\n", "\n", "#calculations:\n", "I=(n*E)/(R+(n*r));\n", "\n", "#Results\n", "print \"current flowing,I(A) = \",I" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "current flowing,I(A) = 2.0\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.2: Page 167:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "\n", "#given data :\n", "n=10;# dry cells of emf\n", "E=1.5;# emf in volts\n", "R=4.9;# resistance in ohm\n", "r=1; # internal resistance in ohm\n", "\n", "#calculations:\n", "I=(n*E)/((n*R)+(r));\n", "\n", "#Results\n", "print \"current flowing,I(A) = \",I" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "current flowing,I(A) = 0.3\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.3: page 167:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "\n", "#given data :\n", "m=3; \n", "n=10;# dry cells of emf\n", "E=1.5;# emf in volts\n", "R=2.5;# resistance in ohm\n", "r=0.5;# internal resistance in ohm\n", "\n", "#colculations:\n", "I=(m*n*E)/((m*R)+(n*r));\n", "\n", "#Results\n", "print \"current flowing,I(A) = \",I" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "current flowing,I(A) = 3.6\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.4: page 172:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "\n", "#given data:\n", "n=10 # no. of cells\n", "Rl=4 # LOAD RESISTANCE\n", "V=12 # in volts\n", "Va=18# IN VOLTS\n", "\n", "#calculations:\n", "r=((Va-V)*Rl)/(n*V)# internal resistance in ohms\n", "Il=V/Rl# IN AMPERES\n", "\n", "#Results\n", "print \"(a)internal resistance in ohms is\",r\n", "print \"(b)load current in amperes is\", Il" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)internal resistance in ohms is 0.2\n", "(b)load current in amperes is 3.0\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.5: page 173:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "\n", "#given data:\n", "n=6 # no. of cells\n", "Rl=3 # LOAD RESISTANCE\n", "I=2.5# IN AMPERES\n", "r1=9 # in ohms\n", "I2=1.25# om amperes\n", "\n", "#calculations:\n", "r=((r1*I2)-(Rl*I))/(n*(I-I2))# internal resistance in ohms\n", "E=((I*(Rl+n*r))/n)# emf of each cell in volts\n", "\n", "#Results\n", "print \"emf of each cell in volts is\", E \n", "print \"internal resistance of each cell in ohms is\",r " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "emf of each cell in volts is 2.5\n", "internal resistance of each cell in ohms is 0.5\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.6: page 173:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "\n", "#given data:\n", "I=20 # in amperes\n", "t=15 # in hours\n", "\n", "#calculations\n", "Ah=I*t# ampere hour capacity of the battery\n", "\n", "#Results\n", "print \"ampere hour capacity of the battery in A-h is\",Ah " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ampere hour capacity of the battery in A-h is 300\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.7: page 174:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "\n", "#given data:\n", "I=30 # in amperes\n", "t=6 # in hours\n", "Vt=2 # terminal voltage\n", "Ic=40# in amperes\n", "tc=5 # in hours\n", "Vc=2.5# in volts\n", "\n", "#calculations:\n", "Aho=I*t# ampere hour output of the battery\n", "Ahi=Ic*tc# ampere hour input of the battery\n", "nAh=(Aho/Ahi)*100# ampere hour efficiency\n", "Who=I*t*Vt# watt hour output of the battery\n", "Whi=Ic*tc*Vc# watt hour input of the battery\n", "nWh=(Who/Whi)*100# ampere hour efficiency\n", "\n", "#Results\n", "print \"(a)ampere hour efficiency of the battery in percentage is\",nAh\n", "print \"(b)watt hour efficiency of the battery in percentage is\",nWh" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)ampere hour efficiency of the battery in percentage is 90.0\n", "(b)watt hour efficiency of the battery in percentage is 72.0\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.8: page 176:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "\n", "#given data:\n", "n=50 # no. of cells\n", "Vc=250# in volts\n", "Vd=1.8#in volts\n", "Vcs=2.2#in volts\n", "r=0.01#internal resistance of each cell in ohms\n", "rl=0.1#lead resistance in ohms\n", "Re=19.4#external resitance in ohms\n", "\n", "#calculations:\n", "Ib=n*r# internal resistnce of battery\n", "Tb=rl+Ib#total resistance of battery\n", "Eb=Vd*n#total rmf of battery\n", "I=(Vc-Eb)/(Re+Tb)# initial charging current in amperes\n", "Ebf=Vcs*n#emf of the battery at the end of charging\n", "If=(Vc-Ebf)/(Re+Tb)# initial charging current in amperes\n", "#Results\n", "print \"(a)initial charging current in amperes is\",I\n", "print \"(b)final charging current in amperes is\",If" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)initial charging current in amperes is 8.0\n", "(b)final charging current in amperes is 7.0\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.9: page 182:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "import numpy as np\n", "\n", "#given data:\n", "V=230# in volts\n", "emf1=122#in volts\n", "r=0.4#internal resistance in ohms\n", "emf2=130#in volts\n", "r1=0.5#in ohms\n", "R = 5; #in ohm\n", "\n", "# calculations:\n", " #apllying kirchoff's low\n", " # x ampere is the total current taken by battery\n", " # x1 ampere is the total current taken by battery A\n", " # x-x1 ampere is the total current taken by battery B\n", " # 5*x+0.4*y=180 is the equation in mesh ABEF\n", " # 5.5*x+0.5*y=100 equation in the mesh CDEF\n", " # equation 1 is 25*x+2*y=540 and equation 2 is 22*x-2*y=400\n", "A=np.array([[25, 2],[22,-2]])# EQUATIONS \n", "B=np.array([540,400])# VALUES\n", "X=np.linalg.solve(A, B)# UNKNOW VALUES\n", "I=X[0]#TOTAL CURRENT IN AMPERES\n", "x1=X[1]#current taken by battery A\n", "x2=I-x1#\n", "p=(I**2)*R# in watt\n", "\n", "\n", "#Results\n", "print \"(a1)current in battery A in amperes (discharging) is\",x1\n", "print \"(a2)current in bettery B in amperes is\",round(x2,1)\n", "print \"(b)total current in battery A and B in amperes (charging)\",I\n", "print \"(c)power dissipated in watts is\",p\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a1)current in battery A in amperes (discharging) is 20.0\n", "(a2)current in bettery B in amperes is 0.0\n", "(b)total current in battery A and B in amperes (charging) 20.0\n", "(c)power dissipated in watts is 2000.0\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.10: page 183:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "import numpy as np\n", "\n", "#given data:\n", "V=34 # in volts\n", "emf1=2#in volts\n", "r1=6 #in ohms\n", "r2=1 #in ohms\n", "r3=2 #in ohms\n", "r4=4 # in ohms\n", "\n", "# calculations:\n", " #apllying kirchoff's low\n", " # x ampere is the current in branch AB\n", " # x1 ampere is the current in branch AC\n", " #x2 ampere is the current in the Branch BD\n", " # x-x2 ampere is the current in the branch BC\n", " # x1+x2 ampere is the current in the branch DC\n", " # x-6*x1+8*x2=2 in mesh ABD\n", " # 2*x-4*x1-14*x2=-2 in mesh BCD\n", " # 10*x1+4*x2=34;//in mesh ADCEF\n", "A=np.array([[1,-6,8],[2,-4,-14],[0,10,4]])# EQUATIONS \n", "B=np.array([2,-2,34])# VALUES\n", "X=np.linalg.solve(A, B)# UNKNOW VALUES\n", "x=X[0]#TOTAL CURRENT IN AMPERES\n", "x1=X[1]#current taken by battery A\n", "x2=X[2]#\n", "b1=x-x2# in amperes\n", "b2=x1+x2#in amperes\n", "R=((r1*x1+r4*(x2+x1))/(x+x1))#total resistance in ohms\n", "\n", "#Results\n", "print \"current in 1 ohms resistance from A to B in amperes is\",x\n", "print \"current in 6 ohms resistance from A to D in amperes is\",x1\n", "print \"current in 8 ohms resistance from B to D in amperes is\",x2\n", "print \"current in 2 ohm resistance from B to C in amperes is\",b1\n", "print \"current in 4 ohm resistance from D to C in amperes is\",b2\n", "print \"total reistance in ohms is\",round(R,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "current in 1 ohms resistance from A to B in amperes is 12.0\n", "current in 6 ohms resistance from A to D in amperes is 3.0\n", "current in 8 ohms resistance from B to D in amperes is 1.0\n", "current in 2 ohm resistance from B to C in amperes is 11.0\n", "current in 4 ohm resistance from D to C in amperes is 4.0\n", "total reistance in ohms is 2.27\n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }