{ "metadata": { "name": "", "signature": "sha256:179d1aa791f84982595aec77701ac00e5f4718cb4b0fb539bad5702fddb2a8a1" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 5:Chemical and Heating Effects of Electric Current" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 5.1: Page 74:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "\n", "#given data :\n", "t=200;# time in sec\n", "M=111.83;# silver in mg\n", "I=0.5;# current in A\n", "\n", "#calculations:\n", "Z=(M/(I*t*1000))*1000# electro-chemical-equivalent\n", "\n", "#Results\n", "print \"E.C.E,Z(mg/C) = \",Z" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "E.C.E,Z(mg/C) = 1.1183\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 5.2: page 74:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "\n", "#given data :\n", "Z=0.329*10**-3# IN g/C\n", "I=1 # in amperes\n", "t=90*60# in seconds\n", "\n", "#calculation:\n", "M=Z*I*t# in grams \n", "A=200#area in centimete square\n", "S=8.9#density in g/cc\n", "T=(M)/(2*A*S)#thickness in cm\n", "\n", "#Results\n", "print \"thickness of copper in cm is\", round(T,6)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "thickness of copper in cm is 0.000499\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 5.3: Page 76:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "\n", "#given data:\n", "w=15 # in kg\n", "t1=15# in degree celsius\n", "t2=100#in degree celsius\n", "t=25 # time in minutes\n", "I=10 # in ampere\n", "n=85 #efficiency of conversion in percentage\n", "\n", "#calculations:\n", "ho=w*(t2-t1)#output heat required in kcal\n", "R=((ho*4187*100)/(I**2*t*60*n))# resistance in ohms\n", "\n", "#Results\n", "print \"resistance in ohms\",R" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "resistance in ohms 41.87\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 5.4: page 76:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "import math\n", "\n", "#given data:\n", "w=20 # in kg\n", "t1=10# in degree celsius\n", "t2=90#in degree celsius\n", "t=2*3600+19*60+34# time in seconds\n", "I=4 # in ampere\n", "n=80 #efficiency of conversion in percentage\n", "\n", "#calculations:\n", "ho=w*(t2-t1)#output heat required in kcal\n", "V=((ho*4187*100)/(I*t*n))# POTENTIAL DROP IN VOLTS\n", "\n", "#Results\n", "print \"potential drop across heater element in volts is\", V" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "potential drop across heater element in volts is 250.0\n" ] } ], "prompt_number": 4 } ], "metadata": {} } ] }