{ "metadata": { "name": "", "signature": "sha256:bb989fb1fd31462248b192e15441cbb384879f100f9a8a541dfbefbf515c52a9" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter4:SINGLE-PHASE TRANSFORMER" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4.1:pg-332" ] }, { "cell_type": "code", "collapsed": false, "input": [ "n2=40.0 #Assigning values to parameters\n", "n1=600.0\n", "kva=50.0\n", "e1=2200.0\n", "e2=(e1*n2)/n1\n", "i1=kva*1000/e1\n", "i2=kva*1000/e2\n", "print\"The primary full load current is\",round(i1,2),\"A\"\n", "print\"The secondary full load current is\",round(i2,2),\"A\"\n", "print\"The secondary voltage at node is\",round(e2,2),\"Volts\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The primary full load current is 22.73 A\n", "The secondary full load current is 340.91 A\n", "The secondary voltage at node is 146.67 Volts\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4.2:pg-333" ] }, { "cell_type": "code", "collapsed": false, "input": [ "e1=3200 #Assigning values to parameters\n", "f=50\n", "bm=1.2\n", "e2=400\n", "n2=111\n", "kva=80\n", "n1=e1*n2/e2\n", "i2=kva*1000/e2\n", "a=e2/(4.44*f*n2*bm)\n", "print\"number of turns on primary windings is n1=\",round(n1,2)\n", "print\"The secondary full load current is i2=\",round(i2,2),\"A\"\n", "print\"The cross-sectional area is a=\",round(a,4),\"meter square\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "number of turns on primary windings is n1= 888.0\n", "The secondary full load current is i2= 200.0 A\n", "The cross-sectional area is a= 0.0135 meter square\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4.3:pg-333" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "e1=6000 #Assigning values to parameters\n", "f=50\n", "e2=250\n", "fm=0.06\n", "n1=e1/(4.44*f*fm)\n", "n2=e2/(4.44*f*fm)\n", "print\"number of turns on primary windings is\",round(n1,2),\"turns\"\n", "print\"number of turns on secondary windings is\",round(n2,3),\"turns\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "number of turns on primary windings is 450.45 turns\n", "number of turns on secondary windings is 18.769 turns\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4.4:pg-334" ] }, { "cell_type": "code", "collapsed": false, "input": [ "f=50.0\n", "n2=50.0 #Assigning values to parameters\n", "n1=500.0\n", "kva=25.0\n", "e1=3000.0\n", "k=n2/n1\n", "i1=kva*1000/e1\n", "i2=i1/k\n", "e2=k*e1\n", "fm=e1/(4.44*f*n1)\n", "print\"The primary full load current is\",round(i1,2),\"A\"\n", "print\"The secondary full load current is\",round(i2,2),\"A\"\n", "print\"The secondary emf is\",round(e2,2),\"Volts\"\n", "print\"The maximum flux is\",round(fm,3),\"Wb\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The primary full load current is 8.33 A\n", "The secondary full load current is 83.33 A\n", "The secondary emf is 300.0 Volts\n", "The maximum flux is 0.027 Wb\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4.5:pg-335" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "e1=230.0 #Assigning values to parameters\n", "v1=e1\n", "i0=5.0\n", "t=math.acos(0.25)\n", "n1=200.0\n", "f=50.0\n", "fm=e1/(4.44*f*n1)\n", "w1=v1*i0*cos(t)\n", "iu=i0*sin(t)\n", "print\"The maximum flux is\",round(fm*1000,3),\"mWb\"\n", "print\"The core loss is\",round(w1,2),\"Watts\"\n", "print\"The maximum current is\",round(iu,2),\"A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum flux is 5.18 mWb\n", "The core loss is 287.5 Watts\n", "The maximum current is 4.84 A\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4.6:pg-335" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "k=0.25 #Assigning values to parameters\n", "sr=50\n", "pr=sr/(k*k)\n", "print\"The Secondary resistance is\",round(pr,2),\"ohms\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Secondary resistance is 800.0 ohms\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4.9:pg-338" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "wf=2500 #Assigning values to parameters\n", "w6=0.6*0.6*wf\n", "w5=0.5*0.5*wf\n", "print\"The copper loss at 60% full-load condition is\",round(w6,2),\"Watts\"\n", "print\"The copper loss at 50% full-load conditionis\",round(w5,2),\"Watts\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The copper loss at 60% full-load condition is 900.0 Watts\n", "The copper loss at 50% full-load conditionis 625.0 Watts\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4.10:pg-338" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "w7=1200 #Assigning values to parameters\n", "wf=w7/(0.75*0.75)\n", "w5=0.5*0.5*wf\n", "print\"The copper loss at 50% full-load condition is\",round(w5,2),\"Watts\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The copper loss at 50% full-load condition is 533.33 Watts\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4.11:pg-339" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "V=230.0; #Assigning values to parameters\n", "VA=350.0;\n", "loss=110.0;\n", "I0=VA/V;\n", "pf=loss/VA;\n", "Iw=I0*pf;\n", "Iu=sqrt(I0**2-Iw**2);\n", "print\"Iron loss component of no load current\",round(Iw,3),\"A\"\n", "print\"Magnatizing component of no load current\",round(Iu,2),\"A\"\n", "print\"no load power factor\",round(pf,3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Iron loss component of no load current 0.478 A\n", "Magnatizing component of no load current 1.44 A\n", "no load power factor 0.314\n" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "\n", "Ex4.13:pg-354" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "r1=0.2 #Assigning values to parameters\n", "x1=0.75\n", "r2=0.05\n", "x2=0.2\n", "pf=0.8\n", "e2=125.0\n", "e1=250.0\n", "t=math.acos(0.8)\n", "k=e2/e1\n", "kva=5.0\n", "i2=kva*1000/e2\n", "r02=r2+k*k*r1\n", "x02=x2+k*k*x1\n", "pr1=(i2*r02*cos(t)-i2*x02*sin(t))*100/e2\n", "v2=e2-(e2*pr1/100)\n", "print\"The percentage regulation at full load 0.8 pf leading is\",round(pr1,2)\n", "print\"The secondary terminal voltage is\",round(v2,2),\"Volts\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The percentage regulation at full load 0.8 pf leading is -4.88\n", "The secondary terminal voltage is 131.1 Volts\n" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "\n", "Ex4.14:pg-355" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "r1=2.0 #Assigning values to parameters\n", "r2=0.02\n", "wi=412.0\n", "pf=0.8\n", "x=1.0\n", "kva=50.0\n", "e1=2300.0\n", "e2=230.0\n", "i2=kva*1000/e2\n", "i1=kva*1000/e1\n", "wcf=(i1*i1*r1)+(i2*i2*r2)\n", "n1=x*kva*pf*100/((x*kva*pf)+(wi*0.001)+(x*x*wcf*0.001))\n", "x=0.5\n", "n2=x*kva*pf*100/((x*kva*pf)+(wi*0.001)+(x*x*wcf*0.001))\n", "print\"Efficiency at full node 0.8pf is\",round(n1,2),\"%\"\n", "print\"Efficiency at half full node 0.8pf is\",round(n2,2),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Efficiency at full node 0.8pf is 94.56 %\n", "Efficiency at half full node 0.8pf is 95.76 %\n" ] } ], "prompt_number": 37 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "\n", "Ex4.15:pg-356" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "x=1.0 #Assigning values to parameters\n", "kva=25.0\n", "pf=0.8\n", "wi=0.35\n", "wcf=0.4\n", "n1=x*kva*pf*100/((x*kva*pf)+(wi*0.001)+(x*x*wcf*0.001))\n", "kva1=kva*(sqrt(wi/wcf))\n", "nm=kva1*pf*100/((kva1*pf)+2*wi)\n", "print\"Load in KVA is\",round(kva1,3)\n", "print\"Maximum Efficency is\",round(nm,2),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Load in KVA is 23.385\n", "Maximum Efficency is 96.39 %\n" ] } ], "prompt_number": 40 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "\n", "Ex4.16:pg-357" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "x=1.0 #Assigning values to parameters\n", "kva=40.0\n", "pf=0.8\n", "wi=450.0\n", "wcf=850.0\n", "n1=x*kva*pf*100/((x*kva*pf)+(wi*0.001)+(x*x*wcf*0.001))\n", "x=sqrt(wi/wcf)\n", "n2=x*kva*pf*100/((x*kva*pf)+(2*wi*0.001))\n", "kva1=kva*sqrt(wi/wcf)\n", "print\"Efficiency at full node 0.8pf is\",round(x,4)\n", "print\"Maximum Efficency is\",round(n2,2)\n", "print\"Load in KVA at which maximum occurs is\",round(kva1,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Efficiency at full node 0.8pf is 0.7276\n", "Maximum Efficency is 96.28\n", "Load in KVA at which maximum occurs is 29.1\n" ] } ], "prompt_number": 43 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "\n", "Ex4.17:pg-358" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "e1=2000.0 #Assigning values to parameters\n", "e2=200.0\n", "r1=2.3\n", "x1=4.2\n", "r2=0.025\n", "x2=0.04\n", "kva=20.0\n", "i1=kva*1000/e1\n", "i2=kva*1000/e2\n", "k=e2/e1\n", "r01=r1+r2/(k*k)\n", "x01=x1+x2/(k*k)\n", "r02=r2+k*k*r1\n", "x02=x2+k*k*x1\n", "print\"The equivalent primary resistance is\",round(r01,2),\"ohms\"\n", "print\"The equivalent primary reactance is\",round(x01,2),\"ohms\"\n", "print\"The equivalent Secondary resistance is\",round(r02,3),\"ohms\"\n", "print\"The equivalent Secondary reactance is\",round(x02,3),\"ohms\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The equivalent primary resistance is 4.8 ohms\n", "The equivalent primary reactance is 8.2 ohms\n", "The equivalent Secondary resistance is 0.048 ohms\n", "The equivalent Secondary reactance is 0.082 ohms\n" ] } ], "prompt_number": 46 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "\n", "Ex4.18:pg-359" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "x=1.0 #Assigning values to parameters\n", "kva=20.0\n", "pf=0.8\n", "wi=450.0\n", "wcf=900.0\n", "n1=x*kva*pf*100/((x*kva*pf)+(wi*0.001)+(x*x*wcf*0.001))\n", "x=sqrt(wi/wcf)\n", "n2=x*kva*pf*100/((x*kva*pf)+(2*wi*0.001))\n", "print\"Efficiency at full node 0.8pf is\",round(n1,2),\"%\"\n", "print\"Maximum Efficency is\",round(n2,2),\"%\"\n", "print\"Load at which maximum occurs is\",round(x,3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Efficiency at full node 0.8pf is 92.22 %\n", "Maximum Efficency is 92.63 %\n", "Load at which maximum occurs is 0.707\n" ] } ], "prompt_number": 49 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4.20:pg-361" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "nm=98.0 #Assigning values to parameters\n", "x=0.5\n", "kva=200.0\n", "pf=1.0\n", "wi=1000*((x*kva*pf*100/nm)/2-(x*kva*pf)/2)\n", "wcu=wi\n", "wcf=wcu/(0.5*0.5)\n", "n1=(x*kva*pf*100)/((x*kva*pf)+(wi*0.001)+(x*x*wcf*0.001))\n", "x=0.75\n", "n2=(x*kva*pf*100)/((x*kva*pf)+(wi*0.001)+(x*x*wcf*0.001))\n", "print\"The core loss is\",round(wi/1000,4),\"kWatts\"\n", "print\"Efficiency at full node 0.8pf is\",round(n1,2)\n", "print\"Efficiency at 75% full node 0.8pf is\",round(n2,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The core loss is 1.0204 kWatts\n", "Efficiency at full node 0.8pf is 98.0\n", "Efficiency at 75% full node 0.8pf is 97.84\n" ] } ], "prompt_number": 55 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4.21:pg-362" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "r1=0.3 #Assigning values to parameters\n", "r2=0.01\n", "x1=1.1\n", "x2=0.035\n", "kva=100\n", "v1=2200\n", "e1=v1\n", "n1=400.0\n", "n2=80.0\n", "k=n2/n1\n", "r01=r1+r2/(k*k)\n", "x01=x1+x2/(k*k)\n", "z01=sqrt(r01*r01+x01*x01)\n", "e2=k*e1\n", "i2=kva*1000/e2\n", "r02=k*k*r01\n", "x02=k*k*x01\n", "pr1=(i2*r02*cos(t)-i2*x02*sin(t))*100/e2\n", "v2=e2-(e2*pr1/100)\n", "print\"The equivalent primary resistance is z01=\",round(z01,2),\"ohms\"\n", "print\"The percentage voltage regulation at full load 0.8 pf leading is x02=\",round(x02,3),\"ohms\"\n", "print\"The secondary terminal voltage is v2=\",round(v2,2),\"volts\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The equivalent primary resistance is z01= 2.05 ohms\n", "The percentage voltage regulation at full load 0.8 pf leading is x02= 0.079 ohms\n", "The secondary terminal voltage is v2= 446.77 volts\n" ] } ], "prompt_number": 61 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4.22:pg-363" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "E2=20.0; #Assigning values to parameters\n", "E1=1000.0;\n", "kva=5.0;\n", "I2=kva*1000/E2;\n", "K=E2/E1;\n", "R01=4.4\n", "R02=K*K*R01;\n", "X01=8.98\n", "X02=K*K*X01;\n", "pf=0.8\n", "percentreg=(I2*R02*pf+I2*X02*sqrt(1-pf*pf))*100/E2;\n", "print\"Percentage maximum regulation is=\",round(percentreg,2)\n", "wi=90\n", "I1=kva*1000/E1\n", "Wcf=I1*I1*R01\n", "kvam=kva*sqrt(wi/Wcf)\n", "print\"kva at maximum Efficency is kvam=\",round(kvam,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Percentage maximum regulation is= 4.45\n", "kva at maximum Efficency is kvam= 4.52\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4.23:pg-365" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "v1=200.0 #Assigning values to parameters\n", "i0=0.7\n", "w=70.0\n", "k=400/200\n", "t=math.acos(w/(v1*i0))\n", "iw=i0*cos(t)\n", "iu=i0*sin(t)\n", "r0=v1/iw\n", "x0=v1/iu\n", "vsc=15.0\n", "i2=10.0\n", "w=85.0\n", "r02=w/(i2*i2)\n", "z02=vsc/i2\n", "x02=sqrt(z02*z02-r02*r02)\n", "r01=r02/(k*k)\n", "x01=x02/(k*k)\n", "e2=400.0\n", "i2=5*1000/(0.8*e2)\n", "v2=e2-i2*r02*cos(t)-i2*x02*sin(t)\n", "print\"The secondary Voltage is v2=\",round(v2,2),\"volts\"\n", "#the answer of v2 in the book is wrong,because in the book ,the values of cos(t) & sin(t) are wrong." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The secondary Voltage is v2= 376.64 volts\n" ] } ], "prompt_number": 50 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4.24:pg-366" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "wi=1000.0 #Assigning values to parameters\n", "kva=50.0\n", "e1=2200.0\n", "ifl=kva*1000/e1\n", "x=1.0\n", "pf=0.8\n", "wcf=(ifl/20)*(ifl/20)*500\n", "n1=x*kva*pf*100/((x*kva*pf)+(wi*0.001)+(x*x*wcf*0.001))\n", "x=sqrt(wi/wcf)\n", "n2=x*kva*pf*100/((x*kva*pf)+(2*wi*0.001))\n", "print\"Efficiency at full node 0.8pf is n1=\",round(n1,3)\n", "print\"Maximum Efficency is n2=\",round(n2,2)\n", "print\"Load at which maximum occurs is x=\",round(x,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Efficiency at full node 0.8pf is n1= 96.048\n", "Maximum Efficency is n2= 96.14\n", "Load at which maximum occurs is x= 1.24\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4.25:pg-367" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "kva=5.0 #Assigning values to parameters\n", "e2=400.0\n", "r02=0.85\n", "x02=1.236\n", "i2f=kva*1000/e2\n", "t=math.acos(0.8)\n", "pr1=(i2f*r02*cos(t)+i2f*x02*sin(t))*100/e2\n", "pr2=(i2f*r02*cos(t)-i2f*x02*sin(t))*100/e2\n", "print\"The percentage regulation at full load 0.8 pf lagging is\",round(pr1,2)\n", "print\"The percentage regulation at full load 0.8 pf leading is\",round(pr2,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The percentage regulation at full load 0.8 pf lagging is 4.44\n", "The percentage regulation at full load 0.8 pf leading is -0.19\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4.26:pg-369" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "cl=(10.0/12)*(10.0/12)*100 #Assigning values to parameters\n", "op=500*10*0.8\n", "il=80.0\n", "eff=op*100/(op+il+cl)\n", "print\"The efficiency is eff=\",round(eff,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The efficiency is eff= 96.4\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4.27:pg-370" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "kw=15 #Assigning values to parameters\n", "t=math.acos(0.8)\n", "kva=kw/cos(t)\n", "x=kva/25\n", "wcf=500\n", "cl1=0.75*0.75*wcf\n", "kw=20\n", "t=math.acos(0.9)\n", "kva=kw/cos(t)\n", "x=kva/25\n", "cl2=x*x*500\n", "kw=10\n", "t=math.acos(0.9)\n", "kva=kw/cos(t)\n", "x=kva/25\n", "cl3=x*x*500\n", "tec=cl1*6+cl2*10+cl3*4\n", "tei=400*24\n", "eo=330000\n", "n=eo*100/(eo+tei+tec)\n", "print\"The efficiency is n=\",round(n,2),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The efficiency is n= 95.48 %\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4.28:pg-371" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "kw=400.0 #Assigning values to parameters\n", "pf=0.8\n", "kva=kw/pf\n", "cl1=4.5\n", "kw=300.0\n", "pf=0.75\n", "kva=kw/pf\n", "cl2=(kva/500)*(kva/500)*4.5\n", "kw=100.0\n", "pf=0.8\n", "kva=kw/pf\n", "cl3=(kva/500)*(kva/500)*4.5\n", "cl4=0\n", "tec=cl1*6+cl2*10+cl3*4+cl4*4\n", "tei=84.0\n", "eo=5800.0\n", "n=eo*100/(eo+tei+tec)\n", "print\"The efficiency is n=\",round(n,2),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The efficiency is n= 97.63 %\n" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4.29:pg-372" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "nm=0.98 #Assigning values to parameters\n", "kva=15.0\n", "x=1.0\n", "pf=1.0\n", "wi=((x*kva*pf/nm)/2-(x*kva*pf)/2)\n", "wcu=wi\n", "kw=2.0\n", "pf=0.5\n", "kva=kw/pf\n", "cl1=(kva/15)*(kva/15)*wi\n", "kw=12.0\n", "pf=0.8\n", "kva=kw/pf\n", "cl2=0.153\n", "kw=18.0\n", "pf=0.9\n", "kva=kw/pf\n", "cl3=(kva/15)*(kva/15)*wi\n", "tec=cl1*12+cl2*6+cl3*6\n", "tei=3.672\n", "eo=204.0\n", "n=eo*100/(eo+tei+tec)\n", "print\"The efficiency is n=\",round(n,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The efficiency is n= 96.98\n" ] } ], "prompt_number": 36 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4.30:pg-374" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "cl1=1.5 #Assigning values to parameters\n", "cl2=0.5*0.5*cl1\n", "tec=cl1*3+cl2*4\n", "tei=36\n", "eo=500\n", "n=eo*100/(eo+tei+tec)\n", "print\"The efficiency is n=\",round(n,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The efficiency is n= 92.25\n" ] } ], "prompt_number": 15 } ], "metadata": {} } ] }