{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 18:Elements of Heat Transfer" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex18.1:pg-757" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " Example 18.1\n", "\n", "\n", " The rate of heat removal is 486.40484238 W\n", "\n", " Temperature at inside surface of brick is 20.2812224957 degree celcius\n" ] } ], "source": [ "\n", "ho = 12.0 # Outside convective heat transfer coefficient in W/m**2K \n", "x1 = 0.23# Thickness of brick in m\n", "k1 = 0.98 # Thermal conductivity of brick in W/mK\n", "x2 = 0.08 # Thickness of foam in m\n", "k2 = 0.02# Thermal conductivity of foam in W/mK\n", "x3 = 1.5# Thickness of wood in cm\n", "k3 = 0.17# Thermal conductivity of wood in W/cmK\n", "hi = 29.0# Inside convective heat transfer coefficient in W/m**2K \n", "A = 90.0 # Total wall area in m**2\n", "to = 22.0# outside air temperature in degree Celsius\n", "ti = -2.0 # Inside air temperature in degree Celsius\n", "print \"\\n Example 18.1\\n\"\n", "U = (1/((1/ho)+(x1/k1)+(x2/k2)+(x3*1e-2/k3)+(1/hi)))# Overall heat transfer coefficient\n", "Q = U*A*(to-ti) # Rate of heat transfer\n", "R = (1/ho)+(x1/k1)\n", "t2 = to-Q*R/A # Temperature at inside surface of brick\n", "\n", "print \"\\n The rate of heat removal is \",Q ,\" W\"\n", "\n", "print \"\\n Temperature at inside surface of brick is \",t2 ,\" degree celcius\"\n", "\n", "#The answers vary due to round off error\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex18.2:pg-758" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " Example 18.2\n", "\n", "\n", " Heat transfer rate is 2.33519645654 kW\n" ] } ], "source": [ "import math\n", "r1 = 5.0 # Inner radius of steel pipe in cm\n", "r2 = 10.0 # Extreme radius of inner insulation in cm\n", "r3 = 13.0# Extreme radius of outer insulation in cm\n", "K1 = 0.23 # Thermal conductivity of inner insulation in W/mK\n", "K2 = 0.37 # Thermal conductivity of outer insulation in W/mK\n", "hi = 58.0 # Inner heat transfer coefficient in W/m**2K\n", "h0 = 12.0 # Inner heat transfer coefficient in W/m**2K\n", "ti = 60.0 # Inner temperature in degree Celsius\n", "to = 25.0 # Outer temperature in degree Celsius\n", "L = 50.0 # Length of pipe in m\n", "\n", "print \"\\n Example 18.2\\n\"\n", "Q =((2*math.pi*L*(ti-to))/((1/(hi*r1*1e-2))+(math.log(r2/r1)/(K1))+(math.log(r3/r2)/(K2))+(1/(h0*r3*1e-2))))\n", "# Rate of heat transfer\n", "print \"\\n Heat transfer rate is \",Q/1e3 ,\" kW\"\n", "#The answers vary due to round off error\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex18.3:pg-759" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " Example 18.3\n", "\n", "\n", " Thermal conductivity of rod A is 57.4969670417 W/mK\n", "\n", " Thermal conductivity of rod B is 86.076212035 W/mK\n", "\n", " Thermal conductivity of rod C is 116.0 W/mK\n" ] } ], "source": [ "\n", "to = 20 # Environment temperature in degree Celsius\n", "t = 100# Temperature of steam path in degree Celsius\n", "ta1 = 26.76 # Temperature at other end in degree Celsius for rod A \n", "d = 10 # diameter of rod in mm\n", "L = 0.25 # length of rod in m\n", "h = 23 # heat transfer coefficient in W/m**2 K\n", "tb1 = 32.00 # Temperature at other end in degree Celsius for rod B \n", "tc1 = 36.93 # Temperature at other end in degree Celsius for rod C \n", "\n", "print \"\\n Example 18.3\\n\"\n", "A = math.pi/4 * (d*1e-3)**2 #Area of rod\n", "p = math.pi*d*1e-3 # perimeter of rod\n", "# For rod A\n", "a = (ta1-to)/(t-to) \n", "ma = (math.acosh(1/a))/L\n", "\n", "Ka = (h*p)/(ma**2*A) # Thermal conductivity of rod A\n", "print \"\\n Thermal conductivity of rod A is \",Ka ,\" W/mK\"\n", "# For rod B\n", "b = (tb1-to)/(t-to) \n", "mb = (math.acosh(1/b))/L\n", "\n", "Kb = (h*p)/(mb**2*A) # Thermal conductivity of rod B\n", "print \"\\n Thermal conductivity of rod B is \",Kb ,\" W/mK\"\n", "c = (tc1-to)/(t-to) \n", "mc = (math.acosh(1/c))/L\n", "\n", "Kc = (h*p)/(mc**2*A) # Thermal conductivity of rod A\n", "print \"\\n Thermal conductivity of rod C is \",math. ceil(Kc) ,\" W/mK\"\n", "#The answers vary due to round off error\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex18.4:pg-760" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " Example 18.4\n", "\n", "\n", " Midway temperature of rod is 88.7138777413 degree Celcius\n", "\n", " Heat loss rate is 88.0331604603 W\n" ] } ], "source": [ "h = 17.4 # Convective heat transfer coefficient in W/m**2K\n", "K = 52.2 # Thermal conductivity in W/mK\n", "t = 120 # Heat reservoir wall temperature in degree celcius\n", "t0 = 35 # Ambient temperature in degree celcius\n", "L = 0.4 # Lenght of rod in m\n", "b = .050 # width of rod in mm\n", "H = .050 # Heigth of rod in mm\n", "\n", "print \"\\n Example 18.4\\n\"\n", "l= L/2\n", "A = b*H\n", "m = math.sqrt(4*h*b/(K*b*H))\n", "t1 = (t-t0)/math.cosh(m*l) + t0 # Midway temperature of rod\n", "Q1 = 2*5.12*K*A*(t-t0)*math.tanh(m*l) # Heat loss rate \n", "print \"\\n Midway temperature of rod is \",t1 ,\" degree Celcius\"\n", "print \"\\n Heat loss rate is \",Q1 ,\"W\"\n", "#The answers vary due to round off error\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex18.5:pg-760" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " Example 18.5\n", "\n", "\n", " Time to cool down to 2 degree celcius is 30.5933342864 min\n", "\n", " Temperature of peas after 10 minutes is 13.1714792663 degree celcius\n", "\n", " Temperature of peas after 30 minutes is 1.0393274697 degree celcius\n" ] } ], "source": [ "\n", "d = 8.0 # Average diameter in mm\n", "r = 750.0 # Density in Kg/m**3\n", "t = 2.0 # Intermediate temperature in degree celcius\n", "t_inf = 1.0 # Ambient temperature in degree celcius\n", "t0 = 25.0 # Initial temperature in degree celcius\n", "c = 3.35 # Specific heat in kJ/KgK\n", "h = 5.8 # Heat transfer coeeficient in W/m**2K\n", "T1 = 10.0 # time period in minutes\n", "T2 = 30.0 # time period in minutes \n", "t1 = 5.0 # Intermediate temperature in degree celcius\n", "print \"\\n Example 18.5\\n\"\n", "tau1 = c*1e3*math.log((t0-t_inf)/(t-t_inf))/(h*60) # Time to cool down to 2 degree celcius\n", "tau2 = (t0-t_inf)*(math.exp(-(c*T1*60)/(c*1e3))) # Temperature of peas after 10 minutes\n", "Y = math.exp(-1*(c*T2*60)/(c*1e3))\n", "tau3 = (t0*Y-t1)/(Y-1)\n", "\n", "print \"\\n Time to cool down to 2 degree celcius is \",tau1 ,\" min\"\n", "print \"\\n Temperature of peas after 10 minutes is \",tau2 ,\" degree celcius\"\n", "print \"\\n Temperature of peas after 30 minutes is \",tau3 ,\" degree celcius\"\n", "#The answers given in book are incorrect\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex18.6:pg-761" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " Example 18.6\n", "\n", "\n", " Surface area of heat exchanger is 53.1155468795 m**2\n" ] } ], "source": [ "\n", "mh = 1000 # mass flow rate of hot fluid in Kg/h\n", "mc = 1000 # mass flow rate of cold fluid in Kg/h\n", "ch = 2.09 # Specific heat capacity of hot fluid in kJ/kgK\n", "cc = 4.187 #Specific heat capacity of cold fluid in kJ/kgK \n", "th1 = 80# Inlet temperature of hot fluid in degree celcius\n", "th2 = 40 # Exit temperature of hot fluid in degree Celsius\n", "tc1 = 30 # Inlet temperature of cold fluid in degree Celsius\n", "U = 24 # heat transfer coefficient in W/m**2K\n", "\n", "print \"\\n Example 18.6\\n\"\n", "Q = mh*ch*(th1-th2)\n", "tc2 = Q/(mc*cc) + tc1# outlet temperature of cold fluid\n", "te = th2-tc1 # Exit end temperature difference in degree Celsius\n", "ti = th1 - tc2 # Inlet end temperature difference in degree Celsius\n", "t_lm = (ti-te)/(math.log(ti/te))\n", "A = Q / (U*t_lm*3.6) # Surface are of heat exchanger\n", "\n", "print \"\\n Surface area of heat exchanger is \",A ,\" m**2\"\n", "\n", "#The answers vary due to round off error\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex18.7:pg-762" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " Example 18.7\n", "\n", "\n", " Surface area of heat exchanger is 3.52948841744 m**2\n" ] } ], "source": [ "\n", "Hfg = 2257.0 # Latent heat at 100 degree Celsius\n", "\n", "ma = 500.0 # mass flow rate of air in Kg/h\n", "ch = 1.005 # Specific heat capacity of hot air in kJ/kgK\n", "ta1 = 260.0 # Inlet temperature of hot air in degree Celsius\n", "ta2 = 150.0 # Inlet temperature of cold air in degree Celsius\n", "tc1 = 100.0 # Inlet temperature of steam\n", "tc2 = tc1 # Exit temperature of steam\n", "U = 46.0 # heat transfer coefficient in W/m**2K\n", "\n", "print \"\\n Example 18.7\\n\"\n", "Q = ma*ch*(ta1-ta2)\n", "m = Q/Hfg # mass flow rate of steam\n", "te = ta2-tc1 # Exit end temperature difference in degree Celsius\n", "ti = ta1 - tc2 # Inlet end temperature difference in degree Celsius\n", "t_lm = (ti-te)/(math.log(ti/te))\n", "A = Q / (U*t_lm*3.6) # Surface are of heat exchanger\n", "\n", "print \"\\n Surface area of heat exchanger is \",A ,\" m**2\"\n", "\n", "#The answers vary due to round off error\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex18.8:pg-763" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " Example 18.8\n", "\n", "\n", " Exit temperature of oil is 90.1251029717 degree celcius\n", "\n", " Rate of heat transfer is 1302.7384927 kW\n" ] } ], "source": [ "import math\n", "mh = 20.15 # mass flow rate of hot fluid in Kg/s\n", "mc = 5.04 # mass flow rate of cold fluid in Kg/h\n", "ch = 2.094 # Specific heat capacity of hot fluid in kJ/kgK\n", "cc = 4.2 #Specific heat capacity of cold fluid in kJ/kgK \n", "th1 = 121# Inlet temperature of hot fluid in degree Celsius\n", "th2 = 40 # Exit temperature of hot fluid in degree Celsius\n", "tc1 = 10 # Inlet temperature of cold fluid in degree Celsius\n", "U = 0.34 # heat transfer coefficient in kW/m**2K\n", "n = 200 # total number of tubes\n", "l = 4.87 # length of tube in m\n", "d = 1.97 # Outer diameter in cm\n", "print \"\\n Example 18.8\\n\"\n", "A = math.pi*n*d*1e-2*l # Total surface area\n", "mc_oil = mh*ch\n", "mc_water = mc*cc\n", "c_min = mc_water\n", "c_max =mc_oil\n", " \n", "if (mc_oil