{ "metadata": { "name": "", "signature": "sha256:3c23e07bbff73d50716bb3f0344f5f19803ca8de755edfb991f464d2a6411a44" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 13: Nozzles" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1, page no. 584" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", " \n", "#Variable Declaration: \n", "p1 = 10 #Pressure of dry steam(in bar):\n", "C1 = 100 #Velocity of steam entering(in m/s):\n", "C2 = 300 #Velocity of steam leaving the nozzle(in m/s):\n", "p2 = 5 #Pressure of steam at exit(in bar):\n", "m = 16 #Mass flow rate(in kg/s):\n", "q = 10 #Heat loss to surroundings(in kJ/kg):\n", "#From steam tables:\n", "h1 = 2778.1 #kJ/kg\n", "hf = 640.23 #kJ/kg\n", "hfg = 2108.5 #kJ/kg\n", "\n", "#Calculations:\n", "dh = (q*10**3+(C1**2-C2**2)/2)/1000\t#Heat drop in the nozzle(in kJ/kg):\n", "dQ = -dh*m #Total heat drop(in kJ/s):\n", "h2 = h1+dh #Enthalpy at state 2(in kJ/kg):\n", "x2 = (h2-hf)/hfg #Dryness fraction at state 2:\n", "\n", "#Results: \n", "print \"Heat drop in the nozzle: \",round(-dh,2),\"kJ/kg\" \n", "print \"Total heat drop: \",round(dQ,2),\"kJ/s\"\n", "print \"Dryness fraction at exit: \",round(x2,4)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Heat drop in the nozzle: 30.0 kJ/kg\n", "Total heat drop: 480.0 kJ/s\n", "Dryness fraction at exit: 0.9997\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2, page no. 585" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", " \n", "from math import sqrt\n", "\n", "#Variable Declaration: \n", "p1 = 10 #Steam entering at pressure(in bar):\n", "p2 = 6 #Pressure at which steam leaves(in bar):\n", "A2 = 20 #Cross-section area of exit of nozzle(in cm**2):\n", "#From steam tables:\n", "h1 = 3478.5 #kJ/kg \n", "s1 = 7.7622 #kJ/kg.K\n", "T2 = 418.45 #C(by interpolation)\n", "h2 = 3309.51 #kJ/kg\n", "v2 = 0.5281 #m**3/kg\n", "\n", "#Calculations:\n", "s2 = s1\n", "C2 = sqrt(2*(h1-h2)*10**3) #Velocity at exit(in m/s):\n", "m = A2*10**(-4)*C2/v2 #Mass flow rate(in kg/s):\n", "\n", "#Result: \n", "print \"Mass flow rate: \",round(m,3),\"kg/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mass flow rate: 2.202 kg/s\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3, page no. 587" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "\n", "from math import sqrt \n", "\n", "#Variable Declaration: \n", "p1 = 12 #Pressure of steam entering(in bar):\n", "p2 = 6 #Pressure at exit(in bar):\n", "m1 = 5 #Mass flow rate(in kg/s):\n", "m2 = m1\n", "m3 = m1\n", "C3a = 500 #Exit velocity(in m/s):\n", "#From steam tables:\n", "h1 = 3045.8 #kJ/kg \n", "h2 = 2900.05 #kJ/kg\n", "s2 = 7.0317 #kJ/kg.K\n", "v2 = 0.3466 #m**3/kg\n", "h3 = 2882.55 #kJ/kg\n", "v3 = 0.3647 #m**3/kg\n", "n = 1.3 #For superheated steam:\n", "\n", "#Calculations:\n", "s1 = s2\n", "s3 = s2\n", "p2 = p1*(2/(n+1))**(n/(n-1)) #Pressue at state 2(in bar):\n", "C2 = sqrt(2*(h1-h2)*10**3) #Velocity at throat(in m/s):\n", "A2 = m2*v2/C2 #Cross-sectional area at throat(in m**2):\n", "C3 = sqrt(2*(h1-h3)*10**3) #Ideal velocity at exit(in m/s):\n", "A3 = m3*v3/C3a #Cross-sectional area at exit(in m**2): \n", "r = C3a/C3 #Coefficient of velocity:\n", "\n", "#Results: \n", "print \"Cross-sectional area at throat: \",round(A2*10**3,3),\" x 10^-3 m^2\"\n", "print \"Cross-sectional area at exit: \",round(A3*10**3,3),\" x 10^-3 m^2\"\n", "print \"Coefficient of velocity: \",round(r,3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Cross-sectional area at throat: 3.21 x 10^-3 m^2\n", "Cross-sectional area at exit: 3.647 x 10^-3 m^2\n", "Coefficient of velocity: 0.875\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4, page no. 588" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", "\n", "from math import sqrt\n", "\n", "#Variable Declaration: \n", "p1 = 16 #Pressure of steam entering(in bar):\n", "p3 = 5 #Pressure at exit(in bar):\n", "m1 = 1 #Mass flow rate(in kg/s):\n", "m2 = m1\n", "m3 = m1\n", "#From steam tables:\n", "#For case 1:\n", "h1 = 3034.8 #kJ/kg\n", "s1 = 6.8844 #kJ/kg.K\n", "v1 = 0.15862 #m**3/kg\n", "n = 1.3\n", "h2 = 2891.39 #kJ/kg\n", "h3 = 2777 #kJ/kg\n", "v2 = 0.2559 #m**3/kg\n", "v3 = 0.3882 #m**3/kg\n", "#For case 2:\n", "h2a = 2905.73 #kJ/kg\n", "v2a = 0.2598 #m**3/kg\n", "v3a = 0.40023 #m**3/kg\n", "\n", "#Calculations:\n", "p2 = p1*(2/(n+1))**(n/(n-1)) #Pressure at the throat of nozzle(in bar):\n", "q12 = h1-h2 #Heat drop up to throat section(in kJ/kg):\n", "C2 = sqrt(2*(h1-h2)*10**3) #Velocity at throat(in m/s):\n", "q23 = h2-h3 #Heat drop from exit(in kJ/kg):\n", "C3 = sqrt(2*(h2-h3)*10**3+C2**2) #Velocity at exit(in m/s):\n", "A2 = m2*v2/C2 #Throat area(in m**2):\n", "A3 = m3*v3/C3 #Exit area(in m**2):\n", "q12a = 0.9*q12 #Considering expansion to have 10% friction loss:\n", "C2a = sqrt(2*q12a*10**3) #Actual velocity at throat(in m/s):\n", "A2a = m2*v2a/C2a #Actual throat area(in m**2):\n", "q23a = 0.9*q23 #Actual drop at the exit of the nozzle(in kJ/kg):\n", "h3a = h2a-q23a #Actual enthalpy at state 3(in kJ/kg):\n", "C3a = sqrt(2*q23a*10**3+C2a**2) #Actual velocity at exit(in m/s):\n", "A3a = m3*v3a/C3a #Actual area at exit(in m**2):\n", "\n", "#Results:\n", "print \"Throat area, without friction consideration: \",round(A2*10**4,2),\"cm**2\"\n", "print \"Exit area, without friction consideration: \",round(A3*10**4,2),\"cm**2\"\n", "print \"Throat area, with friction consideration: \",round(A2a*10**4,2),\"cm**2\"\n", "print \"Exit area, with friction consideration: \",round(A3a*10**4,3),\"cm**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Throat area, without friction consideration: 4.78 cm**2\n", "Exit area, without friction consideration: 5.41 cm**2\n", "Throat area, with friction consideration: 5.11 cm**2\n", "Exit area, with friction consideration: 5.875 cm**2\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5, page no. 590" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from __future__ import division\n", " \n", "from math import sqrt,pi\n", "#Variable Declaration: \n", "P = 1 #Power of turbine(in MW):\n", "p1 = 20 #Pressure of steam entering(in bar):\n", "m = 8 #Steam consumption rate(in kg/kW.h):\n", "p3 = 0.2 #Pressure at which steam leaves(in bar):\n", "d = 0.01 #Throat diameter(in m):\n", "#From Mollier diagram:\n", "q12 = 142 #kJ/kg \n", "v2 = 0.20 #m**3/kg\n", "q13 = 807 #kJ/kg\n", "v3 = 7.2 #m**3/kg\n", "\n", "#Calculations:\n", "C2 = sqrt(2*q12*10**3) #Velocity at throat(in m/s):\n", "m2 = pi*d**2/4*C2/v2 #Mass flow rate:\n", "m3 = m2\n", "n = 10**3*m/(3600*m2) #Number of nozzles:\n", "q13a = 0.90*q13 #Useful heat drop:\n", "C3 = sqrt(2*10**3*q13a)#Velocity at exit(in m/s):\n", "A3 = m3*v3/C3 #Area at exit(in m**2):\n", "\n", "#Results: \n", "print \"Number of nozzles required: \",round(n) \n", "print \"Area at exit: \",round(A3*10**4,2),\"cm**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of nozzles required: 11.0\n", "Area at exit: 12.5 cm**2\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6, page no. 591" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "from math import pi, atan, sqrt\n", "#Variable Declaration: \n", "p1 = 0.7 #Pressure at which steam is supplied(in MPa):\n", "l = 0.06 #Length of diverging nozzle(in m):\n", "d = 0.005 #Throat diameter(in mm):\n", "p3 = 0.1 #Pressure at which steam leaves the nozzle(in MPa):\n", "#From Mollier diagram:\n", "q12 = 138 #kJ/kg\n", "v2 = 0.58 #m**3/kg\n", "T = 203 #\u00b0C\n", "q23 = 247 #kJ/kg\n", "q23a = 209.95 #kJ/kg\n", "v3a = 1.7 #m**3/kg\n", "\n", "#Calculations:\n", "C2 = sqrt(2*q12*10**3) #Velocity at throat(in m/s):\n", "m1 = pi*d**2/4*C2/v2 #Mass flow rate(in kg/s):\n", "m2 = m1\n", "m3 = m1\n", "q = q12+q23a #Total heat drop(in kJ/kg):\n", "C3 = sqrt(2*10**3*q) #Velocity at exit(in m/s):\n", "A3 = m3*v3a/C3 #Area at exit(in m**2):\n", "d1 = (sqrt(A3*4/pi))*10**3 #Diameter at exit(in mm):\n", "a = atan((d1-d*10**3)/(2*60))*180/pi\n", "\n", "#Results: \n", "print \"With no losses, temperature at throat: \",round(T,2),\"\u00b0C\"\n", "print \"Velocity at throat: \",round(C2,2),\"m/s\"\n", "print \"With losses, cone angle: \",round(2*a,2),\"\u00b0\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "With no losses, temperature at throat: 203.0 \u00b0C\n", "Velocity at throat: 525.36 m/s\n", "With losses, cone angle: 1.71 \u00b0\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7, page no. 593" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "from math import sin,pi,sqrt\n", "\n", "#Variable Declaration:\n", "P = 5000 #Power of the turbine(in hp):\n", "m = P*6/3600 #Steam required(in kg of steam/hp-hr):\n", "n = 0.90 #Efficiency of nozzle:\n", "a = 12 #Nozzle angle:\n", "p = 5 #Pitch(in cm):\n", "t = 0.3 #Thickness(in cm):\n", "#From steam tables:\n", "h1 = 2794 #kJ/kg\n", "s1 = 6.4218 #kJ/kg.K\n", "x2 = 0.9478\n", "h2 = 2662.2 #kJ/kg\n", "x2a = 0.9542\n", "v2a = 0.2294 #m**3/kg\n", "\n", "#Calculations:\n", "s2 = s1\n", "h12 = h1-h2 #Change in enthalpy(in kJ/kg):\n", "h12a = n*h12 #Actual change(in kJ/kg):\n", "C2 = sqrt(2*h12a*10**3) #Velocity at inlet(in m/s):\n", "A2 = m*v2a/C2*10**4 #Area at exit of nozzle(in cm**2):\n", "l = 60*pi/3 #Approximate length of the nozzle(in cm):\n", "n = int(l/p)+1 #Number of nozzles:\n", "l1 = n*p #Correct length of nozzle arc:\n", "h = A2/((p*sin(a*pi/180)-t)*n)#Radial height of nozzle(in cm):\n", "\n", "#Results:\n", "print \"Length of nozzle: \",round(l1,2),\"cm\"\n", "print \"Radial height of nozzle: \",round(h,2),\"cm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Length of nozzle: 65.0 cm\n", "Radial height of nozzle: 4.08 cm\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8, page no. 594" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "from math import sqrt\n", "\n", "#Variable Declaration: \n", "p1 = 13 #Pressure at which steam enters(in bar):\n", "p2 = 6 #Pressure at which steam leaves(in bar):\n", "T1 = 150+273 #Temperature of steam entering(in K):\n", "r = 1.4 #Adibatic insex of compression:\n", "\n", "#Calculations:\n", "T2 = T1*(p2/p1)**((r-1)/r) #Final temperature of steam(in K):\n", "C2 = sqrt(2*1.005*(T1-T2)) #Exit velocity(in m/s):\n", "\n", "#Results: \n", "print \"Exit velocity: \",round(C2,2),\"m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Exit velocity: 12.98 m/s\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9, page no. 595" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "from math import sqrt\n", "\n", "#Variable Declaration: \n", "F = 350 #Force on the plate(in N):\n", "p1 = 8 #Initial pressure(in bar):\n", "p3 = 1 #Final pressure(in bar):\n", "A2 = 5*10**(-4) #Throat cross-sectional area(in m**2):\n", "#From steam tables:\n", "h1 = 2769.1 #kJ/kg\n", "s1 = 6.6628 #kJ/kg.K\n", "x2 = 0.9717\n", "h2 = 2685.17 #kJ/kg\n", "v2 = 0.3932 #m**3/kg\n", "x3 = 0.8238\n", "h3 = 2277.6 #kJ/kg\n", "\n", "#Calculations:\n", "s2 = s1\n", "s3 = s1\n", "h12 = h1-h2 #Enthalpy change(in kJ/kg):\n", "C2 = sqrt(2*h12*10**3) #Velocity at throat(in m/s):\n", "m = A2*C2/v2 #Discharge at throat(in kg/s):\n", "C3a = F/m #Actual exit velocity(in m/s):\n", "h23 = h2-h3 #Theoretical enthalpy drop(in kJ/kg):\n", "n = C3a**2/(2*h23*10**3) #Nozzle efficiency:\n", "\n", "#Results:\n", "print \"Discharge at throat: \",round(m,3),\"kg/s\"\n", "print \"Nozzle efficiency: \",round(n*100,2),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Discharge at throat: 0.521 kg/s\n", "Nozzle efficiency: 55.37 %\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10, page no. 597" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", " \n", "from math import sqrt,pi\n", "\n", "#Variable Declaration: \n", "m = 5/60 #Mass flow rate(in kg/s):\n", "p3 = 1 #Pressure at which steam is discharged(in bar):\n", "p1 = 10 #Initial pressure(in bar):\n", "T1 = 200+273 #Initial temperature(in K)\n", "n = 1.3 #Adiabatic index of compression:\n", "\n", "#From steam tables:\n", "h1 = 2827.9 #kJ/kg\n", "s1 = 6.6940 #kJ/kg.K\n", "v1 = 0.2060 #m**3/kg\n", "h2a = 2711.23 #kJ/kg\n", "s2a = 6.6749 #kJ/kg.K\n", "h3 = 2420.08 #kJ/kg\n", "v3 = 1.5025 #m**3/kg\n", "psat = 3.44 #bar (at T = 138.18 \u00b0C)\n", "Tsat = 155.12 #C (at p = 5.45 bar)\n", "\n", "#Calculations:\n", "s3 = s2a\n", "p2 = p1*(2/(n+1))**(n/(n-1)) #Pressure at throat(in bar):\n", "C3 = sqrt(2*(h1-h3)*10**3) #Velocity at exit(in m/s):\n", "A3 = m*v3/C3 #Exit area(in m**2):\n", "d = sqrt(A3*4/pi) #Diameter of nozzle at exit(in m):\n", "T2 = T1*(p2/p1)**((n-1)/n) #Temperature at throat(in K):\n", "d1 = p2/psat #Degree of supersaturation:\n", "u = Tsat-(T2-273) #Amount of undercooling(in \u00b0C):\n", "\n", "#Results: \n", "print \"Degree of supersaturation: \",round(d1,2) \n", "print \"Amount of undercooling: \",round(u,2),\"\u00b0C\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Degree of supersaturation: 1.59\n", "Amount of undercooling: 16.82 \u00b0C\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11, page no. 599" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "\n", "#Variable Declaration: \n", "p1 = 4 #Initial pressure(in bar):\n", "T1 = 180+273 #Initial temperature(in K):\n", "p2 = 1.5 #Final pressure(in bar):\n", "n = 1.3 #Index of compression:\n", "nn = 0.95 #Efficiency due to heat loss:\n", "C = 2.174 #Specific heat(in kJ/kg.K):\n", "#From steam tables:\n", "v1 = 0.5088 #m**3/kg \n", "Tsat = 111.37+273 #K (at p = 1.5 bar)\n", "\n", "#Calculations:\n", "h1 = p1*v1*10**2+2614 #Enthalpy at state 1(in kJ/kg):\n", "v2 = v1*(p1/p2)**(1/n) #Specific volume at state 2(in m**3/kg):\n", "h2 = p2*v2*10**2+2614 #Enthalpy at state 2(in kJ/kg):\n", "dh = nn*(h1-h2) #Actual heat drop(in kJ/kg):\n", "T2 = T1*(p2/p1)**((n-1)/n) #Temperature at state 2(in K):\n", "dT = (1-nn)*(h1-h2)/C #Temperature rise due to supersaturation:\n", "T2a = T2+dT #Actual temperature at state 2(in K):\n", "u = Tsat-T2a #Amount of undercooling(in \u00b0C):\n", "\n", "#Results:\n", "print \"Actual heat drop: \",round(dh,2),\"kJ/kg\"\n", "print \"Amount of undercooling: \",round(u,2),\"\u00b0C\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Actual heat drop: 39.16 kJ/kg\n", "Amount of undercooling: 22.18 \u00b0C\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12, page no. 600" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", " \n", "from math import sqrt\n", "\n", "#Variable Declaration: \n", "p1 = 14 #Initial pressure(in bar):\n", "T1 = 400+273 #Initial temperature(in K):\n", "N = 16 #Number of nozzles:\n", "p2 = 10 #Final pressure(in bar):\n", "m = 5 #Discharge(in kg/s):\n", "nn = 0.90 #Nozzle efficiency:\n", "C1 = 100 #Inlet velocity(in m/s):\n", "n = 1.3 #Insex of compression:\n", "\n", "#From steam tables:\n", "h1 = 3257.5 #kJ/kg \n", "s1 = 7.3026 #kJ/kg.K\n", "T2 = 350.46 #\u00b0C\n", "h2 = 3158.7 #kJ/kg\n", "v2 = 0.2827 #m**3/kg\n", "\n", "#Calculations:\n", "h12 = (h1-h2)*nn #Actual enthalpy change(inn kJ/kg):\n", "C2 = sqrt(2*h12*10**3) #Velocity at exit(in m/s):\n", "A2 = m*v2/(C2*N)*10**4 #Cross-sectional area at exit(in cm**2):\n", "C2a = sqrt(2*h12*10**3+C1**2)#Modified velocity at nozzle exit(in m/s):\n", "ma = 16*2.13*433.41*10**(-4)/0.2827#ma = A2*C2a*N/v2*10**(-4) \n", "p = (ma-m)/m*100 #% increase in discharge:\n", "\n", "#Results: \n", "print \"Cross-sectional area at exit of nozzle: \",round(A2,2),\"cm**2\"\n", "print \"Percentage increase in discharge: \",round(p,2),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Cross-sectional area at exit of nozzle: 2.09 cm**2\n", "Percentage increase in discharge: 4.5 %\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13, page no. 602" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "#Variable Declaration: \n", "p1 = 20 #Initial pressure(in bar):\n", "p3 = 5 #Final pressure(in bar):\n", "n = 1.3\n", "#From steam tables:\n", "T1 = 212.42+273 #K\n", "Tsat = 186.43+273 #K (at 11.6 bar)\n", "psat = 5.452 #bar (at 155.14 \u00b0C)\n", "h1 = 2799.5 #kJ/kg\n", "v1 = 0.009963 #m**3/kg\n", "s1 = 6.3409 #kJ/kg.K\n", "h2aa = 2693.98 #kJ/kg\n", "s2a = 6.5484 #kJ/kg.K\n", "h3a = 2632.76 #kJ/kg\n", "h3 = 2544.21 #kJ/kg\n", "p2 = p1*0.58 #Pressure at throat(in bar):\n", "\n", "#Calculations:\n", "s2aa = s1\n", "s3a = s2a\n", "s3 = s1\n", "T2 = T1*(p2/p1)**((n-1)/n)\t#Temperature at state 2(in K):\n", "d = p2/psat #Degree of supersaturation:\n", "d1 = Tsat-T2 #Degree of undercooling:\n", "h12 = (n/(n-1))*p1*10**2*v1*(1-(T2/T1)) #Isentropic enthalpy drop:\n", "h2 = h1-h12 #Enthalpy at state 2(in kJ/kg):\n", "h12aa = h1-h2aa #Heat drop with no saturation(in kJ/kg):\n", "L = h12aa-h12 #Loss of available heat drop(in kJ/kg):\n", "s12a = L/Tsat #Increase in entropy(in kJ/kg.K):\n", "L1 = h3a-h3 #Loss due to undercooling(in kJ/kg):\n", "p = L1/(h1-h3)*100 #Percentage loss:\n", "\n", "#Results: \n", "print \"Degree of supersaturation: \",round(d,2)\n", "print \"Degree of undercooling: \",round(d1,2),\"\u00b0C\"\n", "print \"Entropy change: \",round(s12a,4),\"kJ/kg.K\"\n", "print \"Loss due to undercooling: \",round(L1,2),\"kJ/kg\"\n", "print \"Percentage loss: \",round(p,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Degree of supersaturation: 2.13\n", "Degree of undercooling: 31.35 \u00b0C\n", "Entropy change: 0.2075 kJ/kg.K\n", "Loss due to undercooling: 88.55 kJ/kg\n", "Percentage loss: 34.69\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14, page no. 604" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", " \n", "from math import sqrt,pi\n", "\n", "#Variable Declaration: \n", "m1 = 150/60 #Mass flow rate(in kg/s):\n", "H = 5 #Height of water level from the axis of injector(in m):\n", "p4 = 20 #Pressuer at which steam is injected(in bar):\n", "Z4 = 0.8 #Water level in boiler from the injector(in m):\n", "x1 = 0.95 #Dryness fraction at state 1:\n", "C4 = 20 #Velocity in delivery pipe(in m/s):\n", "p3 = 1.013 #Atmospheric pressure(in bar):\n", "d = 10**3 #Density(in kg/m**3):\n", "g = 9.81 #Acceleration due to gravity(in m/s**2):\n", "Cps = 3.18 #Specific heat of steam(in kJ/kg.K):\n", "Cpw = 4.18 #Specific heat of water(in kJ/kg.K):\n", "#From steam tables:\n", "T1 = 212.42 #\u00b0C\n", "Tw = 25 #\u00b0C\n", "p2 = 0.7*p4\n", "h1 = 2704.95 #kJ/kg\n", "hfg1 = 1890.7 #kJ/kg\n", "s1 = 6.1462 #kJ/kg.K\n", "x2 = 0.923\n", "h2 = 2639.10 #kJ/kg\n", "v2 = 0.13 #m**3/kg\n", "\n", "#Calculations:\n", "s2 = s1\n", "C2 = sqrt(2*(h1-h2)*10**3) #Velocity of steam at throat(in m/s):\n", "C3 = sqrt(2*(g*Z4+p4*10**5/d+C4**2/2-p3*10**5/d))#Velocity at state 3(in m/s):\n", "m = (C2-C3)/(sqrt(2*g*H)+C3) #Mass of water pumped per kg of steam(in kg):\n", "m3 = m1+m1/m #Mass of mixture passing through state 3(in kg/s):\n", "A3 = m3/(d*C3)*10**4 #Area of throat of mixing nozzle(in cm**2):\n", "d3 = sqrt(A3*4/pi) #Diameter of throat of the mixing nozzle(in cm):\n", "ms = m1/m #Mass of steam required for given flow rate(in kg/s):\n", "A2 = ms*v2/C2*10**4 #Area at state 2(in cm**2):\n", "d2 = sqrt(A2*4/pi) #Diameter of throat of steam nozzle(in cm):\n", "T3 = (x1*hfg1+Cps*T1+m*Cpw*Tw)/(m*Cpw+Cps)#Temperature of water coming out of the injector(in C):\n", "\n", "#Results: \n", "print \"Mass of water pumped per kg of steam: \",round(m,2),\"kg\"\n", "print \"Diameter of throat of the mixing nozzle: \",round(d3,3),\"cm\"\n", "print \"Diameter of throat of steam nozzle: \",round(d2,2),\"cm\"\n", "print \"Temperature of water coming out of the injector: \",round(T3,2),\"\u00b0C\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mass of water pumped per kg of steam: 3.98 kg\n", "Diameter of throat of the mixing nozzle: 0.783 cm\n", "Diameter of throat of steam nozzle: 1.69 cm\n", "Temperature of water coming out of the injector: 145.63 \u00b0C\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15, page no. 607" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "\n", "from math import sqrt\n", "\n", "#Variable Declaration: \n", "p4 = 20 #Pressure at which steam is generated(in bar):\n", "p1 = 1.5 #Pressure at inlet(in bar):\n", "x1 = 0.9 #Dryness fraction:\n", "M = 5000 #Mass of water taken from feed water tank(in kg/hr):\n", "d = 10**3 #Density(in kg/m**3):\n", "#From steam tables:\n", "h1 = 2470.96 #kJ/kg \n", "s1 = 6.6443 #kJ/kg.K\n", "s2 = s1\n", "x2 = 0.88\n", "h2 = 2396.72 #kJ/kg\n", "v2 = 1.7302 #m**3/kg\n", "\n", "#Calculations:\n", "C2 = sqrt(2*(h1-h2)*10**3) #Steam velocity(in m/s):\n", "C3 = sqrt(1.2*p4*2*10**5/d) #Velocity at 3(in m/s):\n", "m = C2/C3-1 #Mass entrained per kg of steam:\n", "ms = M/(3600*m) #Mass of steam supplied per second(in kg/s):\n", "A2 = ms*v2/C2*10**4 #Area of steam nozzle(in cm**2):\n", "D = M/3600+ms #Total discharge from injector(in kg/s):\n", "A = D/(C3*d)*10**4 #Area of discharge orifice(in cm**2):\n", "\n", "#Results: \n", "print \"Mass of water pumped per kg of steam: \",round(m,2),\"kg water/kg of steam\"\n", "print \"Area of steam nozzle: \",round(A2,2),\"cm**2\"\n", "print \"Area of discharge orifice: \",round(A,3),\"cm**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mass of water pumped per kg of steam: 4.56 kg water/kg of steam\n", "Area of steam nozzle: 13.67 cm**2\n", "Area of discharge orifice: 0.244 cm**2\n" ] } ], "prompt_number": 29 } ], "metadata": {} } ] }