{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 1: Relativistic Mechanics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.2, Page 26" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "c = 3e+008; # Speed of light in vacuum, m/s\n", "delta_x = 2.45e+03; # Space difference, m\n", "delta_t = 5.35e-06; # Time difference, s\n", "\n", "#Calculations\n", "v = 0.855*c; # Speed of frame S_prime, m/s\n", "delta_x_prime = 1/sqrt(1-v**2/c**2)*(delta_x - v*(delta_t))*1e-03; # Distance between two flashes as measured in S_prime frame, km\n", "delta_t_prime = 1/sqrt(1-v**2/c**2)*(delta_t - v/c**2*delta_x)*1e+006; # Time between two flashes as measured in S_prime\n", "\n", "#Results\n", "print \"The distance between two flashes as measured in S_prime frame = %4.2f km\"%delta_x_prime\n", "print \"The time between two flashes as measured in S_prime frame = %4.2f micro-second\"%delta_t_prime\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The distance between two flashes as measured in S_prime frame = 2.08 km\n", "The time between two flashes as measured in S_prime frame = -3.15 micro-second\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.4, Page 27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from sympy import *\n", "c = Symbol('c')\n", "\n", "#Variable declaration\n", "c = 1; # Speed of light in vacuum, m/s\n", "u_x_prime = c; # Velocity of photon as measured in S_prime frame, m/s\n", "v = c; # Velocity of frame S_prime relative to S frame, m/s\n", "\n", "#Calculations\n", "u_x = (u_x_prime + v)/(1+v*u_x_prime/c**2);\n", "if u_x == 1: \n", " ux = 'c';\n", "else: \n", " ux = string(u_x)+'c'; \n", "\n", "\n", "#Result\n", "print \"The speed of one photon as observed by the other is %c\"%ux\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The speed of one photon as observed by the other is c\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.6, Page 28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "a = 1; # For simplicity assume length of semi minor axis to be unity, m\n", "c = 3e+08; # Speed of light, m/s\n", "\n", "\n", "#Calculations\n", "#From equation 1-v^2/c^2=1/4, we derive the following expression\n", "v = math.sqrt(3*c**2/4) # Velocity at which surface area of lamina reduces to half in S-frame, m/s\n", "\n", "\n", "print \"The velocity at which surface area of lamina reduces to half in S-frame = %4.2e m/s\"%v\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The velocity at which surface area of lamina reduces to half in S-frame = 2.60e+08 m/s\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.7, Page 29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "m0 = 1; # For simplicity assume the rest mass of stick to be unity, kg\n", "m = 1.5*m0; # Mass of the moving stick, kg\n", "L0 = 1; # Assume resting length of the stick to be unity, m\n", "\n", "#Calculations\n", "# As m = m0/sqrt(1-v^2/c^2) = m0*gama, solving for gama\n", "gama = m/m0; # Relativistic factor\n", "L = L0/gama; # Contracted length of the metre stick, m\n", "\n", "#Result\n", "print \"The contracted length of the metre stick = %4.2f m\"%L\n", " \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The contracted length of the metre stick = 0.67 m\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.8, Page 29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "c = 3e+008; # Speed of light in vacuum, m/s\n", "tau0 = 2e-008; # Mean lifetime of meson at rest, m/s\n", "\n", "#Calculations\n", "v = 0.8*c; # Velocity of moving meason, m/s\n", "tau = tau0/sqrt(1-v**2/c**2); # Mean lifetime of meson in motion, m/s\n", "\n", "#Result\n", "print \"The mean lifetime of meson in motion = %4.2e s\"%tau\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mean lifetime of meson in motion = 3.33e-08 s\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.9, Page 30" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "c = 3e+008; # Speed of light in vacuum, m/s\n", "delta_t0 = 59; # Reading of the moving clock for each hour, min\n", "delta_t = 60; # Reading of the stationary clock for each hour, min\n", "\n", "#Calculations\n", "# As from Time Dilation, delta_t = delta_t0/sqrt(1-v^2/c^2), solving for v\n", "v = sqrt(((delta_t**2-delta_t0**2)*c**2)/delta_t**2)\n", "\n", "#Result\n", "print \"The speed at which the moving clock ticks slow = %4.2e m/s\"%v\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The speed at which the moving clock ticks slow = 5.45e+07 m/s\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.10, Page 30" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "c = 3e+008; # Speed of light in vacuum, m/s\n", "tau0 = 2.5e-008; # Mean lifetime of meson at rest, m/s\n", "\n", "#Calculations\n", "v = 0.8*c; # Velocity of moving meason, m/s\n", "tau = tau0/sqrt(1-v**2/c**2); # Mean lifetime of meson in motion, m/s\n", "N0 = 1; # Assume initial flux of meson beam to be unity, watt/Sq.m\n", "N = N0*exp(-2); # Meson flux after time t, watt/Sq.m\n", "# As N = N0*e^(-t/tau), which on comparing gives\n", "t = 2*tau; # Time during which the meson beam flux reduces, s\n", "d = 0.8*c*t; # The distance that the meson beam can travel before reduction in its flux, m\n", "\n", "#Result\n", "print \"The distance that the meson beam can travel before reduction in its flux = %2d m\"%d\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The distance that the meson beam can travel before reduction in its flux = 20 m\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.11, Page 31" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "c = 3e+008; # Speed of light in vacuum, m/s\n", "E0 = 1; # Rest energy of particle, unit\n", "\n", "#Calculations\n", "E = 3*E0; # Energy of relativistically moving particle, unit\n", "# E = m*c^2 and E0 = m0*c^2\n", "# With m = m0/sqrt(1-v^2/c^2), we have\n", "v = c*sqrt(1-(E0/E)**2); # Velocity of the moving particle, m/s\n", "\n", "#Result\n", "print \"The velocity of the moving particle = %4.2e m/s\"%v\n", "#answer differs due to rounding-off errors" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The velocity of the moving particle = 3.00e+08 m/s\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.12, Page 32" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "c = 3e+008; # Speed of light in vacuum, m/s\n", "m0 = 9.1e-031; # Rest mass of electron, kg\n", "\n", "#Calculations\n", "m = 11*m0; # Mass of relativistically moving electron, kg\n", "E_k = (m-m0)*c**2/(1.6e-019*1e+06); # Kinetic energy of moving electron, MeV\n", "# As m = m0/sqrt(1-v^2/c^2), solving for v\n", "v = c*sqrt(1-(m0/m)**2); # The velocity of the moving electron, m/s\n", "p = m*v; # Momentum of moving electron, kg-m/s\n", "\n", "#Results\n", "print \"The kinetic energy of moving electron = %4.2f MeV\"%E_k\n", "print \"The momentum of moving electron = %4.2e kg-m/s\"%p\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The kinetic energy of moving electron = 5.12 MeV\n", "The momentum of moving electron = 2.99e-21 kg-m/s\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.13, Page 32" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "c = 3e+008; # Speed of light in vacuum, m/s\n", "E0 = 0.5; # Rest energy of the electron, MeV\n", "\n", "#Calculations\n", "v1 = 0.6*c; # Initial velocity of the electron, m/s\n", "v2 = 0.8*c; # Final velocity of the electron, m/s\n", "W = (1/sqrt(1-v2**2/c**2)-1/sqrt(1-v1**2/c**2))*E0; # The amount of work to be done to increase the speed of the electron, MeV\n", "\n", "#Result\n", "print \"The amount of work to be done to increase the speed of an electron = %4.2e J\"%(W*1e+06*1.6e-019)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The amount of work to be done to increase the speed of an electron = 3.33e-14 J\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.14, Page 33" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "c = 1; # Assume speed of light in vacuum to be unity, unit\n", "m0 = 1; # For simplicity assume rest mass of the particle to be unity, unit\n", "\n", "#Calculations\n", "v = c/sqrt(2); # Given speed of the particle, m/s\n", "gama = 1/sqrt(1-v**2/c**2); # Relativistic factor\n", "m = gama*m0; # The relativistic mass of the particle, unit\n", "p = m*v; # The relativistic momentum of the particle, unit\n", "E = m*c**2; # The relativistic total eneryg of the particle, unit\n", "E_k = (m-m0)*c**2; # The relativistic kinetic energy of the particle, unit\n", "\n", "#Results\n", "print \"The relativistic mass of the particle = %5.3fm\"%m\n", "print \"The relativistic momentum of the particle = %1.0gm0c\"%p\n", "print \"The relativistic total energy of the particle = %5.3fm0c^2\"%E\n", "print \"The relativistic kinetic energy of the particle = %5.3fm0c^2\"%E_k\n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The relativistic mass of the particle = 1.414m\n", "The relativistic momentum of the particle = 1m0c\n", "The relativistic total energy of the particle = 1.414m0c^2\n", "The relativistic kinetic energy of the particle = 0.414m0c^2\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.15, Page 34" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "c = 3e+008; # Speed of light in vacuum, unit\n", "m0 = 9.1e-031; # Rest mass of the electron, kg\n", "m = 1.67e-027; # Rest mass of the proton, kg\n", "\n", "#Calculations\n", "# As m = m0/sqrt(1-v^2/c^2), solving for v\n", "v = c*sqrt(1-(m0/m)**2); # Velocity of the electron, m/s\n", "\n", "#Result\n", "print \"The velocity of the electron to have its mass equal to mass of the proton = %5.3e m/s\"%v\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The velocity of the electron to have its mass equal to mass of the proton = 3.000e+08 m/s\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.17, Page 35" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "c = 3e+008; # Speed of light in vacuum, unit\n", "m0 = 9.1e-031; # Rest mass of the electron, kg\n", "E_k = 0.1*1e+006*1.6e-019; # Kinetic energy of the electron, J\n", "\n", "#Calculations&Results\n", "v = sqrt(2*E_k/m0); # Classical speed of the electron, m/s\n", "print \"The classical speed of the electron = %5.3e m/s\"%v\n", "# As E_k = (m-m0)*c^2 = (1/sqrt(1-v^2/c^2)-1)*m0*c^2, solving for v\n", "v = c*sqrt(1-(m0*c**2/(E_k+m0*c**2))**2); # Relativistic speed of the electron, m/s\n", "print \"The relativistic speed of the electron = %5.3e m/s\"%v\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The classical speed of the electron = 1.875e+08 m/s\n", "The relativistic speed of the electron = 1.644e+08 m/s\n" ] } ], "prompt_number": 24 } ], "metadata": {} } ] }