{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 8: Ultrasonics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.1, Page 429" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "d = 8e-004; # Thickness of the piece of piezoelectric crystal, m\n", "v = 5760; # Velocity of ultrasonic waves in the piece of piezoelectric crystal, m/s\n", "\n", "#Calculations\n", "n = v/(2*d); # The frequency of the fundamental mode of ultrasonic wave, Hz\n", "\n", "#Result\n", "print \"The frequency of the fundamental mode of ultrasonic wave = %3.1f MHz\"%(n/1e+006)\n", "\n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The frequency of the fundamental mode of ultrasonic wave = 3.6 MHz\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.2, Page 430" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "d = 2e-003; # Thickness of the piece of quarts crystal, m\n", "rho = 2650; # Density of the crystal, kg/meter-cube\n", "Y = 7.9e+010; # Value of Youngs Modulus, N/metre-square\n", "\n", "#Calculations\n", "n = 1/(2*d)*sqrt(Y/rho); #The frequency of the fundamental mode of vibration, Hz\n", "\n", "#Result\n", "print \"The frequency of the fundamental mode of vibration in quatrz crystal = %5.3f Hz\"%(n/1e+006)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The frequency of the fundamental mode of vibration in quatrz crystal = 1.365 Hz\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.3, Page 430" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "v = 5e+003; # Velocity of ultrasonic beam in steel plate, m/s\n", "n = 25e+003; # Difference between two neighbouring harmonic frequencies (Nm - Nm_minus1), Hz \n", "\n", "#Calculations\n", "d = v/(2*n); # The thickness of steel plate, m\n", "\n", "#Result\n", "print \"The thickness of steel plate = %3.1f m\"%d\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The thickness of steel plate = 0.1 m\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.4, Page 430" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "n = 1e+006; # Frequency of Ultrasonic waves, Hz \n", "C = 2.5e-014; # Capcitance of capacitor, F\n", "\n", "#Calculations\n", "# Frequency of elecric oscillations is given by n = 1/(2*%pi)*sqrt(1/(L*C)), solving for L\n", "L = 1/(4*pi**2*n**2*C); # The inductance of an inductor to produce ultrasonic waves, henry\n", "\n", "#Result\n", "print \"The inductance of an inductor to produce ultrasonic waves = %d henry\"%L\n", "\n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The inductance of an inductor to produce ultrasonic waves = 1 henry\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.5, Page 431" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "d = 50e-002; # Thickness of the metallic rod, m\n", "t1 = 30e-006; # Arrival time for first pulse, s\n", "t2 = 80e-006; # Arrival time for second pulse, s\n", "\n", "#Calculations&Results\n", "v = 2*d/t2; # Velocity of ultrasonic waves, m/s\n", "print \"The velocity of pulse inside the rod = %4.2e m/s\"%v\n", "x = t1*v/2;\n", "print \"The position of pulse inside the rod = %6.4f m\"%x\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The velocity of pulse inside the rod = 1.25e+04 m/s\n", "The position of pulse inside the rod = 0.1875 m\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.6, Page 431" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "I = 2.5e+004; # Sound intensity, W/meter-square\n", "v = 1480; # Sound velocity, m/s\n", "rho_w = 1000; # Density of water, kg/meter-cube\n", "rho_c = 2650; # Density of crystal of transducer, kg/meter-cube\n", "d = 0.001; # Thickness of the quartz, m\n", "f = 20e+003; # Frequency of sound in water, Hz\n", "\n", "#Calculations&Results\n", "# As sound intensity, I = p^2/(2*rho1*v), solving for p\n", "p = sqrt(2*rho_w*v*I); # Pressure in the medium, N/metre-square\n", "a = p/(d*rho_c); # Maximum acceleration of the quartz ultrasonic transducer, metre/second-square\n", "print \"The maximum acceleration produced in quartz transducer = %4.2e metre/second-square\"%a\n", "y = a/(2*pi*f)**2; # Maximum displacement of the quartz transducer, m\n", "print \"The maximum displacement of quartz transducer = %3.1f micrometer\"%(y/1e-006)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum acceleration produced in quartz transducer = 1.03e+05 metre/second-square\n", "The maximum displacement of quartz transducer = 6.5 micrometer\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.7, Page 432" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "L = 0.2; # Length of a magnetostrictive hydrophone, m\n", "lamda = 2*L; # Wavelength of ultrasonic wave, m\n", "v = 4900; # Velocity of ultrasonic beam in water, m/s\n", "\n", "#Calculations\n", "f = v/lamda; # Fundamental frequency of ultrasonic, KHz\n", "\n", "#Result\n", "print \"The fundamental frequency of a magnetostrictive hydrophone = %4.2f KHz\"%(f/1e+03)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The fundamental frequency of a magnetostrictive hydrophone = 12.25 KHz\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.8, Page 432" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "v = 3700; # Velocity of ultrasonic beam in copper, m/s\n", "t = 1e-006; # Delay time for ultrasonic beam, s\n", "\n", "#Calculations\n", "L = v*t; # # Length of a copper wire required for a delay, m\n", "\n", "#Result\n", "print \"The length of a copper wire required for a delay = %6.4f m\"%L\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The length of a copper wire required for a delay = 0.0037 m\n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }