{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 7: Lasers and Holography" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.1, Page 410" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "e = 1.6e-019; # Charge on an electron, eV \n", "h = 6.62e-034; # Planck's constant, J-s\n", "c = 3e+008; # Speed of light in vacuum, m/s\n", "n = 2.8e+019; # Number of photons in laser pulse\n", "lamda = 7e-007; # Wavelength of the radiation emited by the laser, m\n", "\n", "#Calculations\n", "E = (h*c)/(lamda*e); # Energy of the photon in the laser light, eV\n", "del_E = E*n; # The energy of laser pulse having n photons, eV\n", "\n", "#Result\n", "print \"The energy of the laser pulse = %4.2e eV\"%del_E\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The energy of the laser pulse = 4.97e+19 eV\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.2, Page 411" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "c = 3.0e8; #velocity of light, m/s\n", "tc = 0.5e-9 #time duration of pulses(s)\n", "lamda = 6.5e-7 #wavelength, m\n", "\n", "\n", "#Calculations&Results\n", "Lc = c*tc; # coherence length, m\n", "print \"The coherence length is %.2f m\"%Lc\n", "del_v = 1/tc\n", "print \"Resultant bandwidth = %.e Hz\"%del_v\n", "del_lamda = (lamda**2*del_v)/c\n", "print \"Line width = %.2e m\"%(del_lamda)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The coherence length is 0.15 m\n", "Resultant bandwidth = 2e+09 Hz\n", "Line width = 2.82e-12 m\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.3, Page 411" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "a = 4e-003; # Coherence width of laser source, m\n", "lamda = 6e-007; # Wavelength of the pulse, m\n", "D = 100; # Distance of the surface from laser source, m\n", "\n", "#Calculations&Results\n", "A = 2*lamda/a; # Angular spread of laser beam, radian\n", "print \"The angular spread = %1.0e radian\"%A\n", "theta = A/2; # Semi angle, radian\n", "A_s = pi*(D*theta)**2; # Areal spread of laser beam, Sq.m\n", "print \"The areal spread = %1.0e Sq.m\"%A_s\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The angular spread = 3e-04 radian\n", "The areal spread = 7e-04 Sq.m\n" ] } ], "prompt_number": 24 } ], "metadata": {} } ] }