{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 5: Physical Optics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.1, Page 297" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "n1 = 10; # Order of interference maximum for lambda = 7000 angstrom\n", "lambda1 = 7000; # Wavelength of the light, angstrom\n", "lambda2 = 5000; # Wavelength of the light, angstrom\n", "\n", "#Calculations\n", "# As W = D*lambda/(2*d) then, x = n1*D*lambda1/(2*d) = n2*D*lambda2/(2*d), solving for n2\n", "n2 = n1*lambda1/lambda2; # Order of interference maximum for lambda = 5000 angstrom\n", "\n", "#Result\n", "print \"The order of interference maximum for wavelength of 5000 angstrom = %2d \"%n2\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The order of interference maximum for wavelength of 5000 angstrom = 14 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.2, Page 297" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable Declaration\n", "D = 1.6; # Distance between the slit and the screen, m\n", "a = 0.4; # Distance between the slit and the biprism, m\n", "mu = 1.52; # Refractive index of the material of biprism\n", "W = 1e-004; # Fringe width, m\n", "lamda = 5.893e-007; # Wavelength of light used, m\n", "\n", "#Calculations\n", "# As W = lambda*D/(2*a(mu-1)*alpha then\n", "alpha = ((lamda*D)/(2*a*(mu-1)*W))*180/pi; # Angle of biprism, degrees\n", "\n", "#Result\n", "print \"The angle of the biprism = %3.1f degrees\"%alpha\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The angle of the biprism = 1.3 degrees\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3, Page 298" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "lamda = 5.890e-7; # Wavelength of source of light, m \n", "mu = 1.6; #refractive index of the mica sheet\n", "\n", "#Calculations\n", "# As del_x = W*(mu-1)*t/lambda, where del_x = 3*W, solving for t\n", "t = 3*lamda/(mu-1); # Thickness of the mica sheet, m \n", "\n", "#Result\n", "print \"The thickness of the mica sheet = %5.3e cm\"%(t/1e-02)\n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The thickness of the mica sheet = 2.945e-04 cm\n" ] } ], "prompt_number": 54 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.4, Page 298" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "lamda = 6.0e-7; # Wavelength of the monochromatic light, m\n", "D = 1; # Distance between the screen and the two coherent sources, m \n", "W = 5e-004; # Fringe width, m\n", "\n", "#Calculations\n", "d = lamda*D/(W*1e-03); # Distance between two coherent sources, mm\n", "\n", "\n", "print \"The distance between the two coherent sources = %3.1f mm\"%d\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The distance between the two coherent sources = 1.2 mm\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.5, Page 298" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable Declaration\n", "D = 1; # Distance between slits and the screen, m\n", "mu = 1.5; # Refractive index of the material of biprism\n", "a = 0.5; # The distance between the slit and the biprism, m \n", "W = 1.35e-004; # Width of the fringes, m\n", "\n", "#Calculations\n", "alpha = (180.-179.)/2*pi/180; # Acute angle of biprism, radian\n", "lamda = 2*a*(mu-1)*alpha*W/D; # Wavelength of light used, m\n", "\n", "#Result\n", "print \"The wavelength of light used = %4d angstrom\"%(lamda/1e-10)\n", "#Incorrect answer in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of light used = 5890 angstrom\n" ] } ], "prompt_number": 59 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.6, Page 299" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "lamda = 6.328e-007; # Wavelength of the monochromatic light, m\n", "D = 40; # Distance between the slits and the screen, m \n", "W = 0.1; # Distance between the interference maxima, m\n", "\n", "#Calculations\n", "d = lamda*D/W; # Distance between the slits, m\n", "\n", "#Result\n", "print \"The distance between the slits = %6.4f mm\"%(d/1e-03)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The distance between the slits = 0.2531 mm\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.7, Page 299" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "lamda = 5.0e-007; # Wavelength of the monochromatic light, m\n", "D = 1; # Distance between the silts and the screen, m\n", "d = 5e-004/2; # Half of the distance between the two slits, m\n", "mu = 1.5; # Refractive index of glass\n", "t = 1.5e-006; # Thickness of thin glass plate, m\n", "\n", "#Calculations\n", "del_x = D*(mu-1)*t/(2*d);\n", "\n", "#Result\n", "print \"The lateral shift of central maximum = %3.1f mm\"%(del_x/1e-03)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The lateral shift of central maximum = 1.5 mm\n" ] } ], "prompt_number": 60 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.8, Page 300" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable Declaration\n", "lamda = 6.0e-007; # Wavelength of the light, m\n", "mu = 1.463; # Refrctive index of a soap bubble film\n", "n = 0; # Value of n for smallest thickness\n", "r = 0; # Angle of refraction for normal incidence\n", "\n", "#Calculations\n", "# As 2*mu*t*cos(r) = (2*n+1)*lambda/2, solving for t\n", "t = (2*n+1)*lamda/(4*mu*cos(r)); # The thickness of a soap bubble film, m \n", "\n", "#Result\n", "print \"The thickness of a soap bubble film = %5.1f angstrom\"%(t/1e-010)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The thickness of a soap bubble film = 1025.3 angstrom\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.9, Page 300" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "D5 = 3.36e-003; # Diameter of Newton's 5th ring, m \n", "D15 = 5.90e-003; # Diameter of Newton's 15th ring, m \n", "m = 10; # Number of ring\n", "R = 1; # Radius of the plano-convex lens, m\n", "\n", "#Calculations\n", "lamda = (D15**2-D5**2)/(4*m*R);\n", "\n", "\n", "print \"The wavelength of the light used = %4d angstrom\"%(lamda/1e-010)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of the light used = 5880 angstrom\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.10, Page 301" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "D10 = 0.005; # Diameter of Newton's 5th ring, m \n", "n = 10; # Order of the ring\n", "lamda = 6.0e-007; # Wavelength of the light used, m\n", "\n", "#Calculations&Results\n", "R = (D10**2)/(4*n*lamda); # Radius of the curvature of the lens, m\n", "print \"The radius of the curvature of the lens = %6.4f m\"%R\n", "t = D10**2/(8*R); \n", "print \"The thickness of the corresponding air film = %3.1e m\"%t\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The radius of the curvature of the lens = 1.0417 m\n", "The thickness of the corresponding air film = 3.0e-06 m\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.11, Page 301" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "mu = 1.43; # Refractive index of the soap film\n", "n = 0; # Order of fringes for smallest thickness\n", "i = 30; # Angle of incidence, degrees\n", "\n", "#Calculations\n", "# As sin(i)/sin(r) = mu, cos(r)\n", "cosr = sqrt(1-(sin(i*pi/180)/mu)**2); # Cosine of angle r\n", "lamda = 6.0e-007; # Wavelength of the light, m\n", "t = (2*n+1)*lamda/(4*mu*cosr); # Thickness of the soap film, m\n", "\n", "#Result\n", "print \"The thickness of the soap film = %4.2e m\"%t\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The thickness of the soap film = 1.12e-07 m\n" ] } ], "prompt_number": 64 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.12, Page 301" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "lamda = 5.893e-007; # Wavelength of the sodium light, m\n", "mu = 1.42; # Refractive index of the soap film\n", "r = 0; # Angle of refraction, degrees\n", "n = 0; # Order of diffraction for least thickness of dark film\n", "\n", "#Calculations&Result\n", "t = (2*n+1)*lamda/(4*mu*cos(r)); # Least thickness of the film that will apear bright, m\n", "print \"The least thickness of the film that will appear bright = %5.1f m\"%(t/1e-010)\n", "n = 1; # Order of diffraction for least thickness of bright film\n", "t = n*lamda/(2*mu*cos(r)); # Least thickness of the film that will apear dark, m \n", "print \"The least thickness of the film that will appear dark = %6.2f m\"%(t/1e-010) #incorrect answer in the textbook\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The least thickness of the film that will appear bright = 1037.5 m\n", "The least thickness of the film that will appear dark = 2075.00 m\n" ] } ], "prompt_number": 66 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.13, Page 302" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "lamda = 5.893e-007; # Wavelength of the sodium light, m\n", "\n", "#Calculations\n", "# As fringe width of the thin wedge-shaped air film is\n", "# W = lambda/(2*t/20*W), solving for t\n", "t = (10*lamda); # Thickness of the wire separating edges of two plane glass surfaces, m\n", "\n", "#Result\n", "print \"The thickness of the wire = %5.3e m\"%t\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The thickness of the wire = 5.893e-06 m\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.14, Page 303" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "lamda = 5.9e-007; # Wavelength of the reflected light, m\n", "n = 10; # Order of the ring\n", "D10 = 0.005; # Diameter of the 10th ring,in m \n", "\n", "#Calculations&Result\n", "R = (D10**2)/(4*n*lamda); # Radius of curvature of the lens, m\n", "print \"The radius of curvature of the lens = %6.4f m\"%R\n", "t = (D10**2)/(8*R); # Thickness of the corresponding air film, m\n", "print \"The thickness of the corresponding air film = %4.2e m\"%t\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The radius of curvature of the lens = 1.0593 m\n", "The thickness of the corresponding air film = 2.95e-06 m\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.16, Page 304" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "lamda = 6.328e-007; # Wavelength of monochromatic light from He laser, m\n", "n1 = 1; # First order \n", "n2 = 2; # Second order\n", "l = 6000; # Lines/cm of the diffraction grating\n", "A= 1.66e-6;\n", "\n", "#Calculations&Result\n", "theta = degrees(asin(n1*lamda/A));\n", "print \"The first order maximum angle = %4.1f degrees\"%theta\n", "theta = degrees(asin(n2*lamda/A));\n", "print \"The second order maximum angle = %4.1f degrees\"%theta\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The first order maximum angle = 22.4 degrees\n", "The second order maximum angle = 49.7 degrees\n" ] } ], "prompt_number": 69 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.17, Page 305" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "a = 1; # For simplicity assume slit width to be unity, unit\n", "theta = 1; # For simplicity assume diffraction angle to be unity, unit\n", "\n", "#Calculations\n", "# As a*sin(theta) = m*lambda, solving for lambdas\n", "lambda1 = a*sin(theta); # First wavelength, angstrom\n", "lambda2 = a*sin(theta)/2; # First wavelength, angstrom\n", "\n", "#Result\n", "print \"lambda1 = %d*lambda2\"%(lambda1/lambda2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "lambda1 = 2*lambda2\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.18, Page 305" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "lamda = 5.5e-7; # Wavelength of light, m\n", "a = 2.2e-6; # Width of the slit, m\n", "l = 6000; # Lines /cm of the diffraction grating\n", "# In a single slit diffraction pattern the directions of minimum intensity are given by a*sintheta = m*lambda where m = 1,2,3 \n", "# For m = 1\n", "\n", "#Calculations&Results\n", "m = 1; # First order\n", "theta = degrees(asin((m*lamda)/a)); # Angular position of first minima on either side of the central maxima, degrees\n", "print \"The angular position of first minima on either side of the central maxima = %.2f degrees\"%(theta)\n", "\n", "# For m = 2\n", "m = 2; # Second order\n", "theta = degrees(asin(m*lamda/a));\n", "print \"The angular position of second minima on either side of the central maxima = %.2f degrees\"%(theta)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The angular position of first minima on either side of the central maxima = 14.48 degrees\n", "The angular position of second minima on either side of the central maxima = 30.00 degrees\n" ] } ], "prompt_number": 85 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.19, Page 306" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "D = 1.7; # Distance between the slit and the screen, m\n", "W = 2.5e-003; # Given fringe width, m \n", "a = 8e-005; # Width of the first slit, m\n", "b = 4e-004; # Width of the second slit, m\n", "n = b; # \n", "p = [1, 2, 3, 4, 5, 6];\n", "\n", "#Calculations&Results\n", "# In a double slit experiment Fraunhoffer diffraction pattern,the fringe width is given by W = lambda*D/n \n", "lamda = b*W/D; # Wavelength of the light used, m\n", "print \"The wavelength of light = %4d angstrom\"%(lamda/1e-010)\n", "print \"The missing orders are:\\n\"\n", "for i in range(1,6):\n", " s = ((a+b)/a)*i;\n", " print \"%d,\"%s,\n", " \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of light = 5882 angstrom\n", "The missing orders are:\n", "\n", "6, 12, 18, 24, 30,\n" ] } ], "prompt_number": 94 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.20, Page 306" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "D = 2; # Distance of the screen from the slit, m\n", "x = 1.6e-02; # Position of centre of the second dark band, m\n", "m = 2; # Order of diffraction\n", "a = 1.4e-04; # Width of the slit, m\n", "\n", "#Calculations\n", "lamda = (a*x)/(m*D); # Wavelength of light, m\n", "\n", "#Result\n", "print \"The wavelength of the light = %4d angstrom\"%((lamda/1e-010))\n", "#rounding-off error" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of the light = 5599 angstrom\n" ] } ], "prompt_number": 95 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.21, Page 307" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "lambda1 = 5890; # Wavelength of the line, angstrom\n", "lambda2 = 5896; # Wavelength of the line, angstrom\n", "\n", "#Calculations\n", "d_lambda = lambda2 - lambda1; # Wavelength difference, angstrom\n", "n = 2; # Order of diffraction\n", "N = lambda2/(n*d_lambda); # Minimum no. of lines in a grating\n", "\n", "#Result\n", "print \"The minimum number of lines in the grating = %3d lines\"%N\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The minimum number of lines in the grating = 491 lines\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.22, Page 307" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "lamda = 5.0e-07; # Wavelength of the radiation, m\n", "a_plus_b = 2.54e-02/2620; # The grating element, m\n", "theta_max = 90; # Maximum value of angle of diffraction, degrees\n", "\n", "#Calculations\n", "n_max = a_plus_b/lamda*sin(theta_max*pi/180); # Maximum number of visible orders \n", "\n", "#Result\n", "print \"The number of visible orders = %2d \"%n_max\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The number of visible orders = 19 \n" ] } ], "prompt_number": 96 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.23, Page 307" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "lambda1 = 6000; # Wavelength of yellow line, angstrom\n", "lambda2 = 4800; # Wavelength of blue line, angstrom\n", "\n", "#Calculations\n", "#(a+b)sin(theta) = n*6000 ---1\n", "#(a+b)sin(theta) = (n+1)*4800\n", "#Comparing 1 and 2, we get the following,\n", "n = 48./12\n", "theta = 3./4; # Angle of diffraction, radian\n", "a_plus_b = (n*lambda1)/theta\n", "\n", "#Results\n", "print \"Grating element = %d A\"%a_plus_b" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Grating element = 32000 A\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.26, Page 310" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from numpy import *\n", "\n", "#Variable declaration\n", "n = 5; # Order for given wavelength\n", "m = [4, 5, 6, 7, 8]; # Orders of spectral lines in the visible range\n", "lambda1 = 6000; # Wavelength of the spectral line in visible range, angstrom\n", "lambda2 = zeros(5);\n", "\n", "print \"The spectral lines in visible ranges are:\\n\"\n", "for i in range(1,5):\n", " l2 = (n*lambda1)/m[i];\n", " lambda2[i] = l2; # Preserve the lambda value\n", " print \"%4d angstrom\\n\"%(l2),\n", "\n", "print \"The other spectral lines in the visible range 4000A to 7000A are\"\n", "for i in range(1,5):\n", " if lambda2[i] < 7000 and lambda2[i] > 4000:\n", " if lambda2[i] == 6000:\n", " continue\n", " #print \"%4dA\"%lambda2[i]\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The spectral lines in visible ranges are:\n", "\n", "6000 angstrom\n", "5000 angstrom\n", "4285 angstrom\n", "3750 angstrom\n", "The other spectral lines in the visible range 4000A to 7000A are\n" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.27, Page 310" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "N = 4500; # Number of lines in grating\n", "n = 2; # Order of diffraction\n", "lambda1 = 5890; # Wavelength, angstrom\n", "lambda2 = 5896; # Wavelength, angstrom\n", "\n", "#Calculations&Result\n", "RP2 = n*N; # Resolving power of grating in the second order\n", "lamda = (lambda1+lambda2)/2; # Mean wavelength of sodium light, angstrom\n", "d_lambda = lambda2 - lambda1; # Wavelength difference, angstrom\n", "RP = lamda/d_lambda; # Calculated resolving power of grating \n", "if RP2 <> RP:\n", " print(\"The D1 and D2 lines of Na light cannot be resolved in second order\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The D1 and D2 lines of Na light cannot be resolved in second order\n" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.28, Page 311" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "lamda = 5.5e-07; # Wavelength of light used, m\n", "f = 3.0; # Focal length of telescope objective, m \n", "a = 0.01; # Diameter of the telescope objective, m\n", "\n", "#Calculations\n", "# As x/f = 1.22*lambda/a, the Rayleigh criterian for resolution, solving for x\n", "x = 1.22*f*lamda/a; # Distance between two stars just seen as separate, m\n", "\n", "\n", "print \"The distance between two stars just seen as separate = %3.1e m \"%x\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The distance between two stars just seen as separate = 2.0e-04 m \n" ] } ], "prompt_number": 37 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.29, Page 311" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "lamda = 5.461e-07; # Wavelength of light used, m\n", "d = 4.0e-07; # Distance between the two luminous objects, m\n", "\n", "#Calculations\n", "# As d = 1.22*lambda/(2*mu*sin(alpha)) = 1.22*lambda/(2*NA), solving for NA\n", "NA = 1.22*lamda/(2*d); # Numerical aperature of the objective of microscope \n", "\n", "\n", "print \"The numerical aperature of the objective of microscope = %5.3f \"%NA\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The numerical aperature of the objective of microscope = 0.833 \n" ] } ], "prompt_number": 38 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.30, Page 312" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "lamda = 6.0e-07; # Wavelength of light used, m\n", "d_theta = 2.44e-06; # Angular separation between the two stars, radian\n", "\n", "#Calculations\n", "a = 1.22*lamda/d_theta; # Aperature of the objective of a telescope from Rayleigh criterian, m\n", "\n", "\n", "print \"The aperature of the objective of the telescope = %3.1f m \"%a\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The aperature of the objective of the telescope = 0.3 m \n" ] } ], "prompt_number": 39 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.31, Page 312" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "lamda = 5.5e-007; # Wavelength of light used, m\n", "x = 1.5e-003; # Distance between the two pinholes, m\n", "a = 4.0e-003; # Diameter of objective, m\n", "\n", "#Calculations\n", "D = a*x/(1.22*lamda); # Minimum distance from the telescope at which the the pinhole can be resolved from Rayleigh criterian, m \n", "\n", "\n", "print \"The minimum distance from the telescope at which the the pinhole can be resolved = %4.2f m \"%D\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The minimum distance from the telescope at which the the pinhole can be resolved = 8.94 m \n" ] } ], "prompt_number": 40 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.32, Page 312" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "lamda = 5.461e-07; # Wavelength of light used, m\n", "d = 5.55e-07; # Distance between the two luminous objects, m\n", "\n", "#Calculations\n", "# As d = 1.22*lambda/(2*mu*sin(alpha)) = 1.22*lambda/(2*NA), solving for NA\n", "NA = 1.22*lamda/(2*d); # Numerical aperature of the objective of microscope \n", "\n", "\n", "print \"The numerical aperature of the objective of microscope = %4.2f \"%NA\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The numerical aperature of the objective of microscope = 0.60 \n" ] } ], "prompt_number": 41 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.33, Page 313" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "i = 60; # Angle of incidence, degrees\n", "mu = tan(i*pi/180); # Brewester's Law to calculate refractive index\n", "A = 60*pi/180; # Angle of prism, degrees\n", "\n", "#Calculations\n", "# As mu = sind((A+delta_m)/2)/sind(A/2), solving for delta_m\n", "delta_m = 2*degrees(asin(mu*sin(A/2))) # Angle of minimum deviation for green light for its passage through a prism, degrees\n", "\n", "#Result\n", "print \"The angle of minimum deviation for green light for its passage through a prism = %.f degrees\"%((delta_m-60))\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The angle of minimum deviation for green light for its passage through a prism = 60 degrees\n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.34, Page 313" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "lamda = 5.89e-07; # Wavelength of light used, m\n", "mu_O = 1.55; # Refractive index of ordinary light\n", "mu_E = 1.54; # Refractive index of extraordinary light\n", "\n", "#Calculations\n", "tQ = lamda/(4*(mu_O-mu_E)); # The thickness of the quarter wave plate, m\n", "\n", "\n", "print \"The thickness of the quarter plate is = %6.4e m\"%tQ\n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The thickness of the quarter plate is = 1.4725e-05 m\n" ] } ], "prompt_number": 43 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.35, Page 314" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "theta = 9.9; # Optical rotation of solution, degrees\n", "l = 20; # Length of the tube, cm\n", "S = 66; # Specific rotation of pure sugar solution, degree per dm-(g/cc)\n", "\n", "#Calculations\n", "# As the specific rotation, S = 10*theta/l*c, solving for c\n", "c = 10*theta/(l*S); # Concentration of solution for pure sugar, g/cc\n", "c_prime = 0.080; # Concentration of solution for impure sugar, g/cc\n", "Percentage_purity = c*100/c_prime; # Percentage purity of sugar sample\n", "\n", "\n", "print \"The percentage_purity of the sugar sample = %5.2f percent\"%Percentage_purity\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The percentage_purity of the sugar sample = 93.75 percent\n" ] } ], "prompt_number": 44 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.36, Page 314" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "theta = 26.4; # Optical rotation of sugar solution, degrees\n", "l = 20; # Length of the tube, cm\n", "c = 0.20; # Concentration of the solution, g/cc\n", "\n", "#Calculations\n", "S = 10*theta/(l*c); # The specific rotation of the sugar solution, degree per dm per (g/cc) \n", "\n", "\n", "print \"The specific rotation of the sugar solution = %2d degrees\"%S\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The specific rotation of the sugar solution = 66 degrees\n" ] } ], "prompt_number": 45 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.37, Page 315" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "# Function to convert degrees to deg-min\n", "def deg_to_dms(deg):\n", " d = int(deg)\n", " md = abs(deg - d) * 60\n", " md = round(md)\n", " return [d, md]\n", "\n", "lamda = 7.62e-07; # Wavelength of the polarized light, m\n", "mu_R = 1.53914; # Refractive index of quartz for right-handed circularly polarized light\n", "mu_L = 1.53920; # Refractive index of quartz for left-handed circularly polarized light\n", "t = 5.0e-004; # Thickness of the plate, m\n", "\n", "\n", "theta = pi*t*(mu_L-mu_R)/lamda; # The angle of optical rotation, radian\n", "d = deg_to_dms(theta*180/pi); # Call the conversion function\n", "\n", "\n", "print \"The angle of rotation produced by its plate = \",d\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The angle of rotation produced by its plate = [7, 5.0]\n" ] } ], "prompt_number": 43 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.38, Page 315" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "theta = 13.; # Optical rotation of the solution, degrees\n", "l = 20.; # Length of the tube, cm\n", "l_prime = 30.; # New length of the tube, cm\n", "c = 1.; # For simplicity assume concentration of sugar solution to be unity, g/cc\n", "\n", "#Calculations\n", "c_prime = c/3; # New concentration of sugar solution, g/cc\n", "# As, S = 10*theta/(l*c) so 10*theta/(l*c) = 10*theta_prime/(l_prime*c_prime)\n", "# Solving for theta_prime\n", "theta_prime = theta/(l*c)*l_prime*c_prime; # The optical rotation produced by new length of sugar solution, degrees\n", "\n", "\n", "print \"The optical rotation of %d cm length of sugar solution = %3.1f degrees\"%(l_prime, theta_prime)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The optical rotation of 30 cm length of sugar solution = 6.5 degrees\n" ] } ], "prompt_number": 49 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.39, Page 315" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "theta = 11.; # Optical rotation of sugar solution, degrees\n", "l = 20; # Length of the tube, cm\n", "S = 66; # Specific rotation of sugar solution, degrees\n", "\n", "#Calculations\n", "c = theta*10/(l*S); # The concentration of sugar solution, g/cc\n", "\n", "\n", "print \"The strength of the solution = %6.4f g/cc\"%c\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The strength of the solution = 0.0833 g/cc\n" ] } ], "prompt_number": 51 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.40, Page 316" ] }, { "cell_type": "code", "collapsed": false, "input": [ " #Variable declaration\n", "theta = 20; # Optical rotation of sugar solution, degrees\n", "theta_prime = 35.; # New optical rotation of sugar solution, degrees\n", "c = 5; # Percentage concentration of the solution\n", "c_prime = 10; # New percentage concentration of the solution\n", "l = 1; # For simplicity assume length of the sugar solution to be unity\n", "\n", "#Calculations\n", "l_prime = theta_prime*l*c/(c_prime*theta);\n", "\n", "\n", "print \"The length of sugar solution for %d percent concentration and %d degrees optical rotation = %5.3f*l \"%(c_prime, theta_prime, l_prime)\n", "\n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The length of sugar solution for 10 percent concentration and 35 degrees optical rotation = 0.875*l \n" ] } ], "prompt_number": 53 } ], "metadata": {} } ] }