{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 2: Quantum Mechanics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.1, Page 79" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable Declaration\n", "V = 50; # Given potential difference, V\n", "\n", "#Calculations\n", "lamda = 12.24/sqrt(V); # Wavelength of the light, angstrom\n", "\n", "#Result\n", "print \"The de-broglie wavelength of electron = %4.2f angstrom\"%lamda\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The de-broglie wavelength of electron = 1.73 angstrom\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2, Page 79" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable Declaration\n", "h = 6.62e-34; # Planck's constant, J-s\n", "m0 = 1.6e-27; # Rest mass of proton, kg\n", "c = 3.0e+8; # Speed of light, in m/s\n", "v = c/20; # Velocity of the proton, in m/s\n", "\n", "#Calculations\n", "lamda = (h*sqrt(1-v**2/c**2))/(m0*v);\n", "\n", "#Result\n", "print \"The de broglie wavelength associated with the proton = %4.2e m\"%lamda\n", "#answer differs due to rounding-off errors" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The de broglie wavelength associated with the proton = 2.75e-14 m\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3, Page 79" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "c = 3.0e+8; # Speed of light, m/s\n", "v = 2.0e+8; # Velocity of the proton, m/s\n", "m0 = 1.6e-27; # Rest mass of proton, kg\n", "h = 6.62e-34; # Plancks constant,J-s\n", "\n", "#Calculations\n", "lamda = (h*sqrt(1-(v**2/c**2)))/(m0*v);\n", "\n", "#Result\n", "print \"The wavelength of matter wave associated with the proton = %5.3e m\"%lamda\n", "\n", "#answer differs due to rounding-off errors" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of matter wave associated with the proton = 1.542e-15 m\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.5, Page 80" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "a = 0.003; # Accuracy of the electron,in percent\n", "s = 5e+03; # Speed of the electron,in m/s\n", "del_v = (a/100)*s; # Change in velocity,in m/s\n", "m0 = 9.1e-31; # Rest mass of the electron,in kg\n", "hcut = 1.054e-34; # Plancks constant,J-s\n", "\n", "#Calculations\n", "del_x = hcut/(2*del_v*m0);\n", "\n", "#Result\n", "print \"The uncertainity in the position of the electron = %4.2e m\"%del_x\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The uncertainity in the position of the electron = 3.86e-04 m\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.6, Page 81" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "del_t = 2.5e-14; # Lifetime of the hydrogen atom in excited state\n", "hcut = 1.054e-34; # Planck's constant,in J-s\n", "e = 1.6e-19; # Charge on electron,in C\n", "\n", "#Calculations\n", "del_E = hcut/(2*del_t*e); # Energy of the state, in eV\n", "\n", "#Result\n", "print \"The minimum error in measurement of lifetime of excited state of hydrogen atom = %6.4f eV\"%del_E\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The minimum error in measurement of lifetime of excited state of hydrogen atom = 0.0132 eV\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7, Page 81" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "del_x = 1e-09; # Uncertainty in position of the electron, m\n", "m0 = 9.1e-031; # Rest mass of an electron, kg\n", "hcut = 1.054e-034; # Planck's constant,in J-s\n", "\n", "#Calculations\n", "del_v = hcut/(2*del_x*m0); # Uncertainity in velocity of the electron\n", "\n", "#Result\n", "print \"The uncertainity in the velocity of an electron = %4.2e m/s\"%del_v\n", "#Incorrect answer in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The uncertainity in the velocity of an electron = 5.79e+04 m/s\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.8, Page 81" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "hcut = 1.054e-34; # Reduced Planck's constant, Js\n", "v = 3e+07; # Velocity of the electron, m/s\n", "c = 3e+08; # Speed of light in vacuum, m/s\n", "m0 = 9.1e-31; # Rest mass of an electron, kg\n", "del_v = 3e+08; # Uncertainty in velocity of the electron, m/s\n", "\n", "#Calculations\n", "del_x = (hcut*sqrt(1-v**2/c**2))/(2*m0*del_v);\n", "\n", "#Result\n", "print \"The smallest possible uncertainity in position of the electron = %6.4f angstrom\"%(del_x/1e-010)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The smallest possible uncertainity in position of the electron = 0.0019 angstrom\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.9, Page 82" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "n = 1;\n", "m0 = 9.1e-031; # Mass of the electron, kg\n", "a = 1e-10; # Width of the box, m\n", "h = 6.63e-034; # Planck's constant, J-s\n", "\n", "#Calculations\n", "E = n**2*h**2/(8*m0*a**2);\n", "\n", "#Result\n", "print \"The energy of the electron moving in 1D infinetly high potential box = %5.2e J\"%E\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The energy of the electron moving in 1D infinetly high potential box = 6.04e-18 J\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.10, Page 83" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "#n = [1,2]; # Shell numbers for two lowest permitted energy of the electron \n", "m0 = 9.1e-31; # Mass of the electron, kg\n", "a = 2.5e-10; # Width of the box, m\n", "h = 6.63e-34; # Planck's constant, J-s\n", "e = 1.6e-19; # Charge on electron, C\n", "\n", "#Calculations&Results\n", "E = round((h**2)/(8*m0*a**2*e));\n", "for n in range(1,3):\n", " print \"The lowest two permitted energy values of an electron are\"\n", " print E*n**2,\"eV\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The lowest two permitted energy values of an electron are\n", "6.0 eV\n", "The lowest two permitted energy values of an electron are\n", "24.0 eV\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.11, Page 83" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "m0 = 1.67e-27; # Rest mass,in kg\n", "a = 1e-14; # Size of the box\n", "h = 6.63e-34; # Planck's constant,in J-s\n", "n = 1; # Quantum number for lowest energy state\n", "\n", "#Calculations\n", "E_n = n**2*h**2/(8*m0*a**2);\n", "\n", "#Result\n", "print \"The lowest energy of the neutron confined to the nucleus = %4.2e J\"%E_n\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The lowest energy of the neutron confined to the nucleus = 3.29e-13 J\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.12, Page 83" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "m0 = 9.1e-31; # Rest mass, kg\n", "a = 1e-10; # Length of the box, m\n", "h = 6.62e-34; # Planck's constat, J-s\n", "n1 = 1; # Ground state\n", "n2 = 2; # First excited state\n", "e = 1.6e-19; # Charge on electron, C\n", "\n", "#Calculations\n", "E1 = (n1**2*h**2)/(8*m0*a**2*e);\n", "E2 = (n2**2*h**2)/(8*m0*a**2*e);\n", "del_E = E2-E1; \n", "\n", "#Result\n", "print \"The energy difference between the ground state and the first excited state = %5.1f eV\"%del_E\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The energy difference between the ground state and the first excited state = 112.9 eV\n" ] } ], "prompt_number": 11 } ], "metadata": {} } ] }