{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 19: Superconductivity" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.1, Page 959" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "T_c = 6.2; # Critical temperature of lead in superconducting state, K\n", "T = 4; # Temperature at which critical field of lead is to be found out, K\n", "H_c0 = 0.064; # Critical field for lead at 0 K, MA/m\n", "\n", "#Calculation\n", "H_cT = H_c0*(1-(T/T_c)**2); # Critical field for lead at 4 K, MA/m\n", "\n", "#Result\n", "print \"The critical field for lead at 4 K = %5.3f MA/m\"%H_cT\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The critical field for lead at 4 K = 0.037 MA/m\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.2, Page 959" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "T_c1 = 4.153; # Critical temperature of mercury for its one isotope, K\n", "M1 = 200.59; # Mass of first isotope of mercury, amu\n", "M2 = 204; # Mass of second isotope of mercury, amu \n", "\n", "#Calculation \n", "# From isotopic effect of superconductivity,\n", "# T_c2/T_c1 = sqrt(M1/M2), solving for T_c2\n", "T_c2 = T_c1*sqrt(M1/M2); # Critical temperature of mercury for second isotope, K\n", "\n", "#Result\n", "print \"The critical temperature of mercury for its isotope of mass 204 amu = %5.3f K\"%T_c2\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The critical temperature of mercury for its isotope of mass 204 amu = 4.118 K\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.3, Page 960" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "d = 1e-003; # Diameter of aluminium wire, m\n", "r = d/2; # Radius of aluminium wire, m\n", "H_c = 7.9e+003; # Critical magnetic field for Al, A/m\n", "\n", "#Calculation\n", "I_c = 2*3.14*r*H_c; # Critical current through superconducting aluminium wire, A\n", "\n", "#Result\n", "print \"The critical current through superconducting aluminium wire = %6.3f A\"%I_c\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The critical current through superconducting aluminium wire = 24.806 A\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.4, Page 960" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "T_c = 7.18; # Critical temperature of lead in superconducting state, K\n", "H_c0 = 6.5e+004; # Critical field for lead at 0 K, A/m\n", "# At T = 4.2 K\n", "T = 4.2; # Temperature at which critical field of lead is to be found out, K\n", "H_cT = H_c0*(1-(T/T_c)**2); # Critical field for lead at 4 K, A/m\n", "d = 1e-003; # Diameter of lead wire, m\n", "r = d/2; # Radius of lead wire, m\n", "I_c = 2*3.14*r*H_cT; # Critical current through superconducting lead wire, A\n", "J_c = I_c/(3.14*r**2); # Critical current density for superconducting lead wire, A/Sq. meter\n", "print \"The critical current density at %3.1f K = %5.3e A/Sq.m\"%(T, J_c)\n", "# At T = 7 K\n", "T = 7; # Temperature at which critical field of lead is to be found out, K\n", "H_cT = H_c0*(1-(T/T_c)**2); # Critical field for lead at 4 K, A/m\n", "d = 1e-003; # Diameter of lead wire, m\n", "r = d/2; # Radius of lead wire, m\n", "I_c = 2*3.14*r*H_cT; # Critical current through superconducting lead wire, A\n", "J_c = I_c/(3.14*r**2); # Critical current density for superconducting lead wire, A/Sq. meter\n", "print \"The critical current density at %3.1f K = %4.2e A/Sq.m\"%(T, J_c)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The critical current density at 4.2 K = 1.710e+08 A/Sq.m\n", "The critical current density at 7.0 K = 1.29e+07 A/Sq.m\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.5, Page 961" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "T1 = 3; # Initial temperature of lead wire, K\n", "T2 = 7.1; # Final temperature of lead wire, K\n", "lambda1 = 39.6; # Initial London penetration depth for lead, mm\n", "lambda2 = 173; # Final London penetration depth for lead, mm\n", "\n", "#Calculations\n", "# As lambda_T = lambda_0*(1-(T/T_c)^4)^(-1/2) so\n", "# (lambda1/lambda2)^2 = (T_c^4 - T2^4)/(T_c^4 - T1^4)\n", "# Solving for T_c\n", "T_c = ((T2**4-T1**4*(lambda1/lambda2)**2)/(1-(lambda1/lambda2)**2))**(1./4);\n", "\n", "#Result\n", "print \"The critical temperature of lead = %5.3f K\"%T_c\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The critical temperature of lead = 7.193 K\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.6, Page 962" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "T_c = 7.2; # Critical temperature of lead in superconducting state, K\n", "T = 5; # Temperature at which lead loses its superconducting state, K\n", "H_cT = 3.3e+004; # Critical magnetic field for superconducting lead at 5 K, A/m\n", "\n", "#Calculation\n", "# As H_cT = H_c0*(1-(T/T_c)^2), solving for H_c0\n", "H_c0 = H_cT/(1-(T/T_c)**2); # Critical field for lead at 0 K, A/m \n", "\n", "#Result\n", "print \"The critical magnetic field for lead at 0 K = %4.2e A/m\"%H_c0\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The critical magnetic field for lead at 0 K = 6.37e+04 A/m\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.7, Page 962" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "H_c0 = 2e+005; # Critical field for niobium at 0 K, A/m \n", "H_cT = 1e+005; # Critical magnetic field for superconducting niobium at 5 K, A/m\n", "T = 8; # Temperature at which lead loses its superconducting state, K\n", "\n", "#Calculation\n", "# As H_cT = H_c0*(1-(T/T_c)^2), solving for T_c\n", "T_c = T/(1-H_cT/H_c0)**(1./2);\n", "\n", "#Result\n", "print \"The critical temperature for niobium = %6.3f K\"%T_c\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The critical temperature for niobium = 11.314 K\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }