{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 17: Nuclear Physics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.1, Page 888" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "e = 1.6e-019; # Energy equivalent of 1 eV, J/eV\n", "m_n = 1.675e-027; # Mass of the neutron, kg\n", "m_p = 1.672e-027; # Mass of the proton, kg\n", "M_D = 3.343e-027; # Mass of the deutron, kg\n", "c = 3e+08; # Speed of light, m/s\n", "\n", "#Calculations\n", "delta_m = m_n + m_p - M_D; # Mass defect in the formation of deuterium, kg\n", "BE = delta_m*c**2; # Binding energy of the deuterium, J\n", "BE_bar = BE/2; # Binding energy per nucleon of deuterium, J\n", "\n", "#Result\n", "print \"Binding energy per nucleon for the deutron = %5.3f MeV\"%(BE_bar/(e*1e+06))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Binding energy per nucleon for the deutron = 1.125 MeV\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.2, Page 889" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "amu = 931.5; # Energy equivalent of 1 amu, MeV\n", "m_n = 1.008665; # Mass of the neutron, amu\n", "m_p = 1.007825; # Mass of the proton, amu\n", "M_He = 4.002870; # Mass of the heluim nucleus, amu\n", "c = 3e+08; # Speed of light, m/s\n", "\n", "#Calculations\n", "BE = (2*m_n+2*m_p - M_He)*amu; # Binding energy for the alpha particle, MeV\n", "\n", "#Result\n", "print \"The binding energy for the alpha particle = %2d MeV\"%BE\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The binding energy for the alpha particle = 28 MeV\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.4, Page 890" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "\n", "print \"Values of Z for different values of A are:\"\n", "for A in range(7,11):\n", " Z = A/(2+0.015*A**(2./3))\n", " print round(Z,2),\n", "\n", "print \"\\n\\nSince 4.36 is closer to 3, 4Be9 is more stable\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Values of Z for different values of A are:\n", "3.41 3.88 4.36 4.83 \n", "\n", "Since 4.36 is closer to 3, 4Be9 is more stable\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.5, Page 891" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "from sympy import *\n", "c2 = Symbol('c2')\n", "\n", "#Calculations\n", "#For N14O17\n", "Q1 = (14.00753+4.00206)*c2-(17.00450+1.00814)*c2\n", "print \"Since, Q = \",Q1, \"which is negative, the reaction is endothermic\"\n", "#For Li7He4\n", "Q2 = (7.01822+1.00814)*c2-(4.00206+4.00206)*c2\n", "print \"Since, Q = \",Q2, \"which is negative, the reaction is endothermic\"\n", "#Answers differ due to rounding-off errors in Sympy" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Since, Q = -0.00305000000000177*c2 which is negative, the reaction is endothermic\n", "Since, Q = 0.02224*c2 which is negative, the reaction is endothermic\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.7, Page 892" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "mp = 1.00814 #amu\n", "mn = 1.00898 #amu\n", "Mp = 30.98356 #amu\n", "Msi = 30.98515 #amu\n", "\n", "#Calculations\n", "Q = Mp+mn-Msi-mp #amu\n", "Q = Q*931.5 #MeV\n", "Eth = Q*(-(Mp+mn)/Mp)\n", "\n", "#Result\n", "print \"Threshold frequency = %.3fMeV\"%Eth\n", "#Rounding-off error" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Threshold frequency = 0.721MeV\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.8, Page 892\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "Q = -7.6342 #MeV\n", "Mp = 19.0457 #amu\n", "mi = 1.0087 #amu\n", "me = 1.00728 #amu\n", "Ki = 15\n", "\n", "#calculations\n", "Ke = (Q*Mp-(mi-Mp)*Ki)/(me+Mp)\n", "Eth = Q*(-(Mp+mn)/Mp)\n", "\n", "#Result\n", "print \"Kinetic energy of protons = %.3f MeV\"%Ke\n", "print \"Threshold frequency = %.3f MeV\"%Eth" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Kinetic energy of protons = 6.241 MeV\n", "Threshold frequency = 8.039 MeV\n" ] } ], "prompt_number": 38 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.9, Page 893" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "e = 1.6e-019; # Energy equivalent of 1 eV, J/eV\n", "N_A = 6.023e+023; # Avogadro's number\n", "E_f = 200*1e+06*e; # Energy released per fission, J\n", "\n", "#Calculations\n", "E_mol = E_f*N_A; # Energy released by one mole of U235, J\n", "E = E_mol*1000/235; # Energy released by the fission of 1 kg of U235, J\n", "\n", "#Result\n", "print \"The Energy released by the fission of 1 kg of U235 = %4.2e kWh\"%(E/(1000*3600))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Energy released by the fission of 1 kg of U235 = 2.28e+07 kWh\n" ] } ], "prompt_number": 39 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.10, Page 894" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "e = 1.6e-019; # Energy equivalent of 1 eV, J/eV\n", "E = 3.2e+07; # Energy released per second by the reactor, J\n", "\n", "#Calculations\n", "E_f = 200*1e+06*e; # Energy released per fission, J\n", "N = E/E_f; # Number of fissions per second of U235, per second\n", "\n", "#Result\n", "print \"The number of U235 atoms undergoing fissions per second = %1.0e\"%N\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The number of U235 atoms undergoing fissions per second = 1e+18\n" ] } ], "prompt_number": 40 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.11, Page 894" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "e = 1.6e-019; # Energy equivalent of 1 eV, J/eV\n", "N_A = 6.023e+026; # Avogadro's number, per kmol\n", "P = 2; # Power produced by the fission of U235, watt\n", "\n", "#Calculations\n", "E_f = 200*1e+06*e; # Energy released per fission, J\n", "FR = P/E_f; # Fission rate of U235, fission/sec\n", "N = 0.5/235*N_A; # Number of U235 nuclei in 0.5 kg of U235\n", "E = 200*N; # Energy released in the complete fissioning of 0.5 kg of U235, MeV\n", "\n", "#Results\n", "print \"The fission rate of U235 = %4.2e fissions/sec\"%FR\n", "print \"The energy released in the complete fissioning of 0.5 kg of U235 = %1.0e kcal\"%(E*1e+06*e/(1000*4.186))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The fission rate of U235 = 6.25e+10 fissions/sec\n", "The energy released in the complete fissioning of 0.5 kg of U235 = 1e+10 kcal\n" ] } ], "prompt_number": 41 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.12, Page 894" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "e = 1.6e-019; # Energy equivalent of 1 eV, J/eV\n", "R_max = 0.6; # Radius of two dees of the cyclotron, m\n", "B = 1.6; # Strength of pole pieces of the cyclotron, tesla\n", "# For proton\n", "m = 1.67e-027; # Mass of the proton, kg\n", "q = 1.6e-019; # Charge on a proton, C\n", "\n", "#Calculations&Result\n", "E = 1./2*q**2*R_max**2*B**2/(m*e*1e+06); # Energy of the proton, MeV\n", "f_proton = q*B/(2*pi*m*1e+06); # Cyclotron oscillator frequency for the proton, MHz\n", "print \"Energy of the proton = %5.2f MeV\"%E\n", "print \"Cyclotron frequency for proton = %5.2f MHz\"%f_proton\n", "# For deuteron\n", "m = 2*1.67e-027; # Mass of the deuteron, kg\n", "q = 1.6e-019; # Charge on a deuteron, C\n", "E = 1./2*q**2*R_max**2*B**2/(m*e*1e+06); # Energy of the deuteron, MeV\n", "f_deuteron = q*B/(2*pi*m*1e+06); # Cyclotron oscillator frequency for the deuteron, MHz\n", "print \"Energy of the deuteron = %5.2f MeV\"%E\n", "print \"Cyclotron frequency for deuteron = %5.2f MHz\"%f_deuteron\n", "# For alpha-particle\n", "m = 4*1.67e-027; # Mass of the alpha-particle, kg\n", "q = 2*1.6e-019; # Charge on a alpha-particle, C\n", "E = 1./2*q**2*R_max**2*B**2/(m*e*1e+06); # Energy of the deuteron, MeV\n", "f_alpha = q*B/(2*pi*m*1e+06); # Cyclotron oscillator frequency for the alpha-particle, MHz\n", "print \"Energy of the alpha-particle = %5.2f MeV\"%E\n", "print \"Cyclotron frequency for alpha-particle = %5.2f MHz\"%f_alpha\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy of the proton = 44.15 MeV\n", "Cyclotron frequency for proton = 24.40 MHz\n", "Energy of the deuteron = 22.07 MeV\n", "Cyclotron frequency for deuteron = 12.20 MHz\n", "Energy of the alpha-particle = 44.15 MeV\n", "Cyclotron frequency for alpha-particle = 12.20 MHz\n" ] } ], "prompt_number": 44 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.13, Page 895" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "e = 1.67e-013; # Energy equivalent of 1 eV, J/eV\n", "R_max = 0.75; # Radius of two dees of the cyclotron, m\n", "f = 15e+06; # Frequency of alternating potential, Hz\n", "m = 1.67e-027; # Mass of the proton, kg\n", "\n", "#Calculations\n", "# As E = 1/2*q^2*R_max^2*B^2/(m*e) and f = q*B/(2*%pi*m), solving for E\n", "E = (2*pi**2*m*f**2*R_max**2)/(e);\n", "\n", "#Result\n", "print \"Energy of the protons issuing out of the cyclotron = %6.4f MeV\"%E\n", "#Incorrect answer in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy of the protons issuing out of the cyclotron = 24.9824 MeV\n" ] } ], "prompt_number": 60 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.14, Page 896" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "e = 1.6e-019; # Charge on an electron, C \n", "c = 3e+08; # Speed of light, m/s\n", "B_orbit = 0.5; # Magnetic field at the orbit of the betatron, T\n", "f = 60; # Operating frequency of the betatron, Hz\n", "\n", "#Calculations\n", "omega = 2*pi*f; # Angular frequency of operation, rad/s\n", "r = 1.6/2; # Radius of stable orbit, m\n", "K_av = 4*omega*e*r**2*B_orbit/1.6e-019; # Average energy gained by the electron per turn, eV\n", "K_max = c*e*r*B_orbit/1.6e-019; # Maximum energy gained by the eectron, eV\n", "\n", "#Results\n", "print \"The average energy gained by the electron per turn = %5.1f eV\"%K_av\n", "print \"The maximum energy gained by the electron = %5.1e eV\"%K_max\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The average energy gained by the electron per turn = 482.5 eV\n", "The maximum energy gained by the electron = 1.2e+08 eV\n" ] } ], "prompt_number": 46 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.15, Page 896" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "q = 1.6e-019; # Charge on a deuteron, C \n", "amu = 931.5; # Energy equivalent of 1 amu, MeV\n", "m0 = 2.0141; # Rest mass of a deuteron, kg\n", "B0 = 1.5; # Magnetic field at the centre of the synchrocyclotron, T\n", "B = 1.431; # Magnetic field at the periphery of the synchrocyclotron, T \n", "\n", "#Calculations\n", "f0 = q*B0/(2*3.14*m0*1.67e-027*1e+06); # Maximum frequency of Dee voltage of synhrocyclotron, MHz\n", "f = 1e+07; # Minimum frequency of Dee voltage, Hz \n", "m = (q*B)/(2*3.14*f*1.67e-027); # Mass of deuteron at the periphery of the Dee, amu\n", "K = (m-m0)*amu; # Gain in energy of the deuteron, MeV\n", "\n", "#Results\n", "print \"The maximum frequency of Dee voltage = %5.2f MHz\"%f0\n", "print \"The gain in energy of the deuteron = %6.2f MeV\"%K\n", "#Incorrect answer in textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum frequency of Dee voltage = 11.36 MHz\n", "The gain in energy of the deuteron = 157.47 MeV\n" ] } ], "prompt_number": 63 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.16, Page 897" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "V = 1000; # Operating voltage of the GM counter, volt\n", "a = 1e-04 # Radius of GM counter wire, m\n", "b = 2e-02; # Radius of cathode, m\n", "\n", "#Calculations\n", "E = V/(2.3026*a*log10(b/a)); # Maximum radial field at the surface of central wire of GM tube, V/m\n", "tau = 1e+09; # Life time of GM tube, counts\n", "N = tau/(50*60*60*2000); # Life of the GM counter, years\n", "\n", "#Results\n", "print \"The maximum radial field at the surface of central wire of GM tube = %4.2e V/m\"%E\n", "print \"The life of the GM counter = %4.2f years\"%N\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum radial field at the surface of central wire of GM tube = 1.89e+06 V/m\n", "The life of the GM counter = 2.78 years\n" ] } ], "prompt_number": 49 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.17, Page 898" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable declaration\n", "I = 15.7; # Ionization potential of argon in GM counter, volt\n", "a = 0.012/2*1e-02; # Radius of GM counter wire, m\n", "b = 5./2*1e-02; # Radius of cathode, m\n", "lamda = 7.8e-006; # Mean free path of argon in GM counter, m\n", "\n", "#Calculations\n", "# As E*lambda = I = V*lambda/(2.3026*a*log10(b/a)), solving for V\n", "V = 2.3026*a*I*log10(b/a)/lamda; # Voltage that must be applied to produce an avalanche in GM tube, volt\n", "\n", "#Result\n", "print \"The voltage that must be applied to produce an avalanche in GM tube = %6.2f volt\"%V\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The voltage that must be applied to produce an avalanche in GM tube = 728.52 volt\n" ] } ], "prompt_number": 50 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17.18, Page 898" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "count_err = 1e-03; # Fractional error in counting\n", "m = 3; # Plateau slope\n", "\n", "#Calculations\n", "delta_V = count_err*100/m*100; # Maximum permissible voltage fluctuation in a GM counter, volt\n", "\n", "#Result\n", "print \"The maximum permissible voltage fluctuation in a GM counter = %3.1f volts\"%delta_V\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum permissible voltage fluctuation in a GM counter = 3.3 volts\n" ] } ], "prompt_number": 51 } ], "metadata": {} } ] }