{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 10: Electrostatics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.1, Page 507" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "m = 4e-013; # Mass of the particle, kg\n", "q = 2.4e-019; # Charge on particle, C\n", "d = 2e-002; # Distance between the two horizontally charged plates, m\n", "g = 9.8; #`Acceleration due to gravity, m/sec-square\n", "\n", "#Calculations\n", "E = (m*g)/q ; # Electric field strength, N/C\n", "V = E*d; # Potential difference between the two charged horizontal plates, V\n", "\n", "#Result\n", "print \"The potential difference between the two horizontally charged plates = %3.1e V\"%V\n", "#Incorrect answer in textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The potential difference between the two horizontally charged plates = 3.3e+05 V\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.2, Page 507" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable Declaration\n", "q1 = 1e-009; # Charge at first corner, C\n", "q2 = 2e-009; # Charge at second corner, C\n", "q3 = 3e-009; # Charge at third corner, C\n", "d = 1.; # Side of the equilateral triangle, m\n", "theta = 30; # Angle at which line joining the observation point to the source charge makes with the side, degrees\n", "\n", "#Calculations\n", "r = (d/2)/cos(theta*pi/180); # Distance of observation point from the charges, m\n", "#since,1/4*%pi*%eps = 9e+009;\n", "V = (q1+q2+q3)*(9e+009)/r; # Elecric potential, V\n", "\n", "#Result\n", "print \"The electric potential at the point equidistant from the three corners of the triangle = %4.1f V\"%V\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The electric potential at the point equidistant from the three corners of the triangle = 93.5 V\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.3, Page 508" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "#Variable Declaration\n", "q = 2e-008; \n", "q1 = q; # Charge at first corner, C\n", "q2 = -2*q; # Charge at second corner, C\n", "q3 = 3*q; # Charge at third corner, C\n", "q4 = 2*q; # Charge at fourth corner, C\n", "d = 1; # Side of the square, m\n", "\n", "#Calculations\n", "r = round(d*sin(45*pi/180),2); # Distance of centre of the square from each corner, m\n", "V = (q1+q2+q3+q4)*(9e+009)/r; # Elecric potential at the centre of the square, V \n", "\n", "#Result\n", "print \"The electric potential at the centre of the square = %4d V\"%V\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The electric potential at the centre of the square = 1014 V\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.6, Page 511" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "V = 60; # Electric potential of smaller drop, volt\n", "r = 1; # For simplcity assume radius of each small drop to be unity, unit\n", "q = 1; # For simplicity assume charge on smaller drop to be unity, C\n", "k = 1; # For simplicity assume Coulomb's constant to be unity, unit\n", "\n", "#Calculations\n", "R = 2**(1./3)*r; # Radius of bigger drop, unit\n", "Q = 2*q; # Charge on bigger drop, C\n", "V_prime = k*Q/R*V; # Electric potential of bigger drop, volt\n", "\n", "#Result\n", "print \"The electric potential of new drop = %4.1f V\"%V_prime\n", "#Incorrect answer in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The electric potential of new drop = 95.2 V\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.7, Page 512" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "m = 9.1e-031; # Mass of the electron, kg\n", "e = 1.6e-019; # Charge on an electron, C\n", "g = 9.8; # Acceleration due to gravity, m/sec-square\n", "\n", "#Calculations\n", "# Electric force, F = e*E, where F = m*g or e*E = m*g\n", "E = m*g/e; # Electric field which would balance the weight of an electron placed in it, N/C\n", "\n", "#Result\n", "print \"The required electric field strength = %3.1e N/C\"%E\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The required electric field strength = 5.6e-11 N/C\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.8, Page 512" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "q1 = 8e-007; # First Charge, C\n", "q2 = -8e-007; # Second Charge, C\n", "r = 15e-002; # Distance between the two charges, m\n", "k = 9e+009; # Coulomb's constant, N-metre-square/coulomb-square\n", "\n", "#Calculations&#Results\n", "E1 = k*q1/r**2; # Electric field strength due to charge 8e-007 C\n", "print \"The electric field strength at midpoint = %3.1e N/C\"%E1\n", "E2 = abs(k*q2/r**2); # Electric field strength -8e-007 C \n", "print \"The electric field strength at midpoint = %3.1e N/C\"%E2\n", "# Total electric field strength at the mid-point is\n", "E = E1+E2; # Net electric field at mid point, N/C\n", "print \"The net electric field strength at midpoint = %3.1e N/C\"%E\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The electric field strength at midpoint = 3.2e+05 N/C\n", "The electric field strength at midpoint = 3.2e+05 N/C\n", "The net electric field strength at midpoint = 6.4e+05 N/C\n" ] } ], "prompt_number": 21 } ], "metadata": {} } ] }