{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 6: Dielectric Properties" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 1, Page number 6-23" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "dielectric constant is 1.339\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "alpha_e=10**-40; #polarisability(Fm**2)\n", "N=3*10**28; #density of atoms\n", "epsilon0=8.85*10**-12; \n", "\n", "#Calculation\n", "epsilonr=(N*alpha_e/epsilon0)+1; #dielectric constant\n", "\n", "#Result\n", "print \"dielectric constant is\",round(epsilonr,3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 2, Page number 6-24" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "capacitance is 8.85e-12 F\n", "charge on plates is 8.85e-10 C\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "A=100*10**-4; #area(m**2)\n", "epsilon0=8.85*10**-12; \n", "d=1*10**-2; #seperation(m)\n", "V=100; #potential(V)\n", "\n", "#Calculation\n", "C=A*epsilon0/d; #capacitance(PF)\n", "Q=C*V; #charge on plates(C)\n", "\n", "#Result\n", "print \"capacitance is\",C,\"F\"\n", "print \"charge on plates is\",Q,\"C\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 3, Page number 6-24" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "polarisability is 2.242e-41 Fm**2\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "epsilonr=1.0000684; #dielectric constant\n", "N=2.7*10**25; #number of atoms\n", "epsilon0=8.85*10**-12; \n", "\n", "#Calculation\n", "alpha_e=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)\n", "\n", "#Result\n", "print \"polarisability is\",alpha_e,\"Fm**2\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 4, Page number 6-24" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "voltage is 39.73 V\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "A=650*10**-6; #area(m**2)\n", "epsilon0=8.85*10**-12; \n", "d=4*10**-3; #seperation(m)\n", "Q=2*10**-10; #charge(C)\n", "epsilonr=3.5; #dielectric constant\n", "\n", "#Calculation \n", "V=Q*d/(epsilon0*epsilonr*A); #voltage(V)\n", "\n", "#Result\n", "print \"voltage is\",round(V,2),\"V\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 5, Page number 6-25" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "polarisation is 212.4 *10**-9 C-m\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "epsilonr=5; #relative permittivity\n", "V=12; #potential(V)\n", "d=2*10**-3; #separation(m) \n", "epsilon0=8.85*10**-12; \n", "\n", "#Calculation\n", "P=epsilon0*(epsilonr-1)*V/d; #polarisation(C-m)\n", "\n", "#Result\n", "print \"polarisation is\",P*10**9,\"*10**-9 C-m\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 6, Page number 6-25" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "electronic polarisability is 3.29 *10**-40 Fm**2\n", "answer in the book varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "epsilonr=3.75; #relative dielectric constant\n", "gama=1/3; #internal field constant\n", "D=2050; #density(kg/m**3)\n", "M=32; #atomic weight(amu)\n", "Na=6.02*10**26; #avagadro number\n", "epsilon0=8.85*10**-12; \n", "\n", "#Calculation\n", "N=Na*D/M; #number of atoms per m**3\n", "x=(epsilonr-1)/(epsilonr+2);\n", "alpha_e=x*3*epsilon0/N; #electronic polarisability(F-m**2)\n", "\n", "#Result\n", "print \"electronic polarisability is\",round(alpha_e*10**40,2),\"*10**-40 Fm**2\"\n", "print \"answer in the book varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 7, Page number 6-26" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "orientational polarisation is 1.0298 *10**-11 C-m\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "e=1.6*10**-19; #charge(coulomb)\n", "x=0.25*10**-9; #separation(m)\n", "E=5*10**5; #intensity of electric field(V/m)\n", "T=300; #temperature(K) \n", "KB=1.381*10**-23; #boltzmann constant(J/K)\n", "N=1.6*10**20; #avagadro number\n", "\n", "#Calculation\n", "Pd=N*(e*x)**2*E/(3*KB*T); #orientational polarisation(C-m)\n", "\n", "#Result\n", "print \"orientational polarisation is\",round(Pd*10**11,4),\"*10**-11 C-m\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 8, Page number 6-26" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "polarisability is 2.242e-41 Fm**2\n", "radius of electron cloud is 5.864 *10**-11 m\n", "answer for radius given in the book varies due to rounding off errors\n", "displacement is 0.7 *10**-16 m\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "epsilonr=1.0000684; #dielectric constant\n", "N=2.7*10**25; #number of atoms\n", "epsilon0=8.85*10**-12; \n", "E=10**6; #electric field(V/m)\n", "Z=2;\n", "\n", "#Calculation\n", "alphae=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)\n", "r=(alphae/(4*math.pi*epsilon0))**(1/3); #radius of electron cloud(m)\n", "d=alphae*E/(Z*e); #displacement(m) \n", "\n", "#Result\n", "print \"polarisability is\",alpha_e,\"Fm**2\"\n", "print \"radius of electron cloud is\",round(r*10**11,3),\"*10**-11 m\"\n", "print \"answer for radius given in the book varies due to rounding off errors\"\n", "print \"displacement is\",round(d*10**16,1),\"*10**-16 m\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 9, Page number 6-27" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "voltage across plates is 53.8 V\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "A=750*10**-6; #area(m**2)\n", "epsilon0=8.85*10**-12; \n", "epsilonr=3.5; #dielectric constant\n", "d=5*10**-3; #seperation(m)\n", "Q=2.5*10**-10; #charge on plates(C)\n", "\n", "#Calculation\n", "V=Q*d/(epsilon0*epsilonr*A); #voltage across plates(V)\n", "\n", "#Result\n", "print \"voltage across plates is\",round(V,1),\"V\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 10, Page number 6-27" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "dipole moment per unit electric field is 8.9 *10**-40 F-m**2\n", "polarisation is 26.7 *10**-15 C-m\n", "dielectric constant is 1.00302\n", "polarisability is 8.9 *10**-40 Fm**2\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "N=3*10**25; #number of atoms\n", "epsilon0=8.85*10**-12; \n", "r=0.2*10**-9; #radius(m) \n", "E=1; #field\n", "\n", "#Calculation\n", "p=4*math.pi*epsilon0*r**3; #dipole moment per unit electric field(F-m**2)\n", "P=N*p; #polarisation(C-m)\n", "epsilonr=1+(4*math.pi*r**3*N/E); #dielectric constant\n", "alphae=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)\n", "\n", "#Result\n", "print \"dipole moment per unit electric field is\",round(p*10**40,1),\"*10**-40 F-m**2\"\n", "print \"polarisation is\",round(P*10**15,1),\"*10**-15 C-m\"\n", "print \"dielectric constant is\",round(epsilonr,5)\n", "print \"polarisability is\",round(alphae*10**40,1),\"*10**-40 Fm**2\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 11, Page number 6-28" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "polarisability is 1.426 *10**-40 F-m**2\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "N=2.7*10**25; #number of atoms\n", "epsilon0=8.85*10**-12; \n", "epsilonr=1.000435; #dielectric constant\n", "\n", "#Calculation\n", "alphae=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)\n", "\n", "#Result\n", "print \"polarisability is\",round(alphae*10**40,3),\"*10**-40 F-m**2\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 12, Page number 6-28" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "polarisability is 6.785 *10**-40 F-m**2\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "epsilon0=8.85*10**-12; \n", "epsilonr=4; #dielectric constant\n", "NA=6.02*10**26; #avagadro number\n", "D=2.08*10**3; #density(kg/m**3)\n", "M=32; #atomic weight(kg)\n", "\n", "#Calculation\n", "N=NA*D/M; #number of atoms\n", "alphae=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)\n", "\n", "#Result\n", "print \"polarisability is\",round(alphae*10**40,3),\"*10**-40 F-m**2\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }