{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 5: Electron Theory of Metals" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 1, Page number 5-27" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "temperature is 1259.93 K\n", "answer given in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "E_EF=0.5; #fermi energy(eV)\n", "FE=1/100; #probability\n", "Kb=1.381*10**-23; #boltzmann constant(J/k)\n", "x=6.24*10**18; \n", "\n", "#Calculation\n", "KB=Kb*x;\n", "y=E_EF/KB;\n", "T=y/math.log(1/FE); #temperature(K)\n", "\n", "#Result\n", "print \"temperature is\",round(T,2),\"K\"\n", "print \"answer given in the book is wrong\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 2, Page number 5-28" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "total number of free electrons is 8.3954 *10**28 electrons/m**3\n", "answer in the book varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "e=1.602*10**-19; #charge(c)\n", "m=9.11*10**-31; #mass(kg)\n", "h=6.63*10**-34; #plancks constant(Js)\n", "Ef=7*e; #fermi energy(J)\n", "\n", "#Calculation\n", "x=Ef*8*m/h**2;\n", "n23=x/((3/math.pi)**(2/3));\n", "n=n23**(3/2); #total number of free electrons(electrons/m**3)\n", "\n", "#Result\n", "print \"total number of free electrons is\",round(n/10**28,4),\"*10**28 electrons/m**3\"\n", "print \"answer in the book varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 3, Page number 5-28" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "relaxation time is 39.742 *10**-15 s\n", "answer in the book varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "rho=1.54*10**-8; #resistivity(ohm m)\n", "n=5.8*10**28; #number of electrons\n", "e=1.602*10**-19; #charge(c)\n", "m=9.11*10**-31; #mass(kg)\n", "\n", "#Calculation\n", "tow=m/(n*e**2*rho); #relaxation time(s)\n", "\n", "#Result\n", "print \"relaxation time is\",round(tow*10**15,3),\"*10**-15 s\"\n", "print \"answer in the book varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 4, Page number 5-29" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "relaxation time is 3.82 *10**-14 s\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "rho=1.43*10**-8; #resistivity(ohm m)\n", "n=6.5*10**28; #number of electrons\n", "e=1.6*10**-19; #charge(c)\n", "m=9.1*10**-31; #mass(kg)\n", "\n", "#Calculation\n", "tow=m/(n*e**2*rho); #relaxation time(s)\n", "\n", "#Result\n", "print \"relaxation time is\",round(tow*10**14,2),\"*10**-14 s\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 5, Page number 5-29" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "number of conduction electrons is 1.8088 *10**29 /m**3\n", "mobility is 0.00128 m**2/Vs\n", "drift velocity is 2.3 *10**-4 m/s\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "D=2.7*10**3; #density(kg/m**3)\n", "rho=2.7*10**-8; #resistivity(ohm m)\n", "w=26.98; #atomic weight\n", "Na=6.025*10**26; #avagadro number\n", "e=1.6*10**-19; #charge(c)\n", "L=5; #length(m)\n", "R=0.06; #resistance(ohm)\n", "I=15; #current(A)\n", "n=3; #number of electrons\n", "\n", "#Calculation\n", "N=n*D*Na/w; #number of conduction electrons(/m**3)\n", "mew=1/(rho*N*e); #mobility(m**2/Vs)\n", "vd=I*R/(L*rho*N*e); #drift velocity(m/s)\n", "\n", "#Result\n", "print \"number of conduction electrons is\",round(N/10**29,4),\"*10**29 /m**3\"\n", "print \"mobility is\",round(mew,5),\"m**2/Vs\"\n", "print \"drift velocity is\",round(vd*10**4,1),\"*10**-4 m/s\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 6, Page number 5-30" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "mobility is 0.00427 m**2/Vs\n", "answer given in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "D=8.92*10**3; #density(kg/m**3)\n", "rho=1.73*10**-8; #resistivity(ohm m)\n", "W=63.5; #atomic weight\n", "Na=6.02*10**26; #avagadro number\n", "e=1.6*10**-19; #charge(c)\n", "\n", "#Calculation\n", "n=D*Na/W;\n", "mew=1/(rho*n*e); #mobility(m**2/Vs)\n", "\n", "#Result\n", "print \"mobility is\",round(mew,5),\"m**2/Vs\"\n", "print \"answer given in the book is wrong\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 7, Page number 5-31" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "mobility is 0.00428 m**2/Vs\n", "answer given in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "D=8.95*10**3; #density(kg/m**3)\n", "rho=1.721*10**-8; #resistivity(ohm m)\n", "W=63.54; #atomic weight\n", "Na=6.025*10**26; #avagadro number\n", "e=1.6*10**-19; #charge(c)\n", "\n", "#Calculation\n", "n=D*Na/W;\n", "mew=1/(rho*n*e); #mobility(m**2/Vs)\n", "\n", "#Result\n", "print \"mobility is\",round(mew,5),\"m**2/Vs\"\n", "print \"answer given in the book is wrong\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 8, Page number 5-31" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "relaxation time is 3.64 *10**-14 s\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "rho=1.50*10**-8; #resistivity(ohm m)\n", "n=6.5*10**28; #conduction electrons(per m**3)\n", "e=1.602*10**-19; #charge(c)\n", "m=9.11*10**-31; #mass(kg)\n", "\n", "#Calculation\n", "tow=m/(n*e**2*rho); #relaxation time(sec)\n", "\n", "#Result\n", "print \"relaxation time is\",round(tow*10**14,2),\"*10**-14 s\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 9, Page number 5-32" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "relaxation time is 3.97 *10**-14 s\n", "drift velocity is 0.7 m/s\n", "mobility is 0.7 *10**-2 m**2/Vs\n", "thermal velocity is 1.17 *10**5 m/s\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "m=9.11*10**-31; #mass(kg)\n", "rho=1.54*10**-8; #resistivity(ohm m)\n", "e=1.602*10**-19; #charge(c)\n", "E=10**2; #electric field(V/m)\n", "n=5.8*10**28; #number of electrons\n", "Kb=1.381*10**-23; #boltzmann constant\n", "T=300; #temperature(K)\n", "\n", "#Calculation\n", "tow=m/(n*e**2*rho); #relaxation time(s)\n", "vd=e*E*tow/m; #drift velocity(m/s)\n", "mew=vd/E; #mobility(m**2/Vs)\n", "Vth=math.sqrt(3*Kb*T/m); #thermal velocity(m/s)\n", "\n", "#Result\n", "print \"relaxation time is\",round(tow*10**14,2),\"*10**-14 s\"\n", "print \"drift velocity is\",round(vd,1),\"m/s\"\n", "print \"mobility is\",round(mew*10**2,1),\"*10**-2 m**2/Vs\"\n", "print \"thermal velocity is\",round(Vth/10**5,2),\"*10**5 m/s\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 10, Page number 5-32" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "fermi velocity is 1.39 *10**6 m/s\n", "mean free path is 5.52 *10**-8 m\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "m=9.11*10**-31; #mass(kg)\n", "e=1.602*10**-19; #charge(c)\n", "E=5.5; #fermi energy(V/m)\n", "tow=3.97*10**-14; #relaxation time(s)\n", "\n", "#Calculation\n", "Vf=math.sqrt(2*E*e/m); #fermi velocity(m/s)\n", "lamda=Vf*tow; #mean free path(m)\n", "\n", "#Result\n", "print \"fermi velocity is\",round(Vf/10**6,2),\"*10**6 m/s\"\n", "print \"mean free path is\",round(lamda*10**8,2),\"*10**-8 m\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 11, Page number 5-33" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "electronic concentration is 5.863 *10**28 per m**3\n", "fermi energy is 8.83 *10**-19 J\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "n=1; #number of electrons\n", "NA=6.025*10**26; #avagadro number\n", "D=10500; #density(kg/m**3)\n", "M=107.9; #atomic weight(kg)\n", "m=9.11*10**-31; #mass(kg)\n", "h=6.63*10**-34; #plancks constant(Js)\n", "\n", "#Calculation\n", "n=n*NA*D/M; #electronic concentration(per m**3)\n", "x=(3*n/math.pi)**(2/3);\n", "Ef=h**2*x/(8*m); #fermi energy(J)\n", "\n", "#Result\n", "print \"electronic concentration is\",round(n/10**28,3),\"*10**28 per m**3\"\n", "print \"fermi energy is\",round(Ef*10**19,2),\"*10**-19 J\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 12, Page number 5-33" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "current density is 1 *10**7 amp/m**2\n", "drift velocity is 0.7391 *10**-3 m/s\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "D=8.92*10**3; #density(kg/m**3)\n", "w=63.5; #atomic weight\n", "Na=6.02*10**26; #avagadro number\n", "e=1.6*10**-19; #charge(c)\n", "I=100; #current(A)\n", "A=10*10**-6; #area(m**2)\n", "n=1;\n", "\n", "#Calculation\n", "J=I/A; #current density(amp/m**2)\n", "n=n*Na*D/w;\n", "vd=J/(n*e); #drift velocity(m/s)\n", "\n", "#Result\n", "print \"current density is\",int(J/10**7),\"*10**7 amp/m**2\"\n", "print \"drift velocity is\",round(vd*10**3,4),\"*10**-3 m/s\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }