{ "metadata": { "name": "", "signature": "sha256:50d61ee8fa972cdf457beff8302930b51b8d1018696b3dbcc148db2d3f471c34" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "3: Principles of Quantum Mechanics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.1, Page number 3.12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "c = 3*10**8 #velocity of light(m/sec)\n", "m = 1.67*10**-27 #mass of proton(kg)\n", "h = 6.626*10**-34 #planck's constant\n", "\n", "#Calculation\n", "v = (1/10)*c #velocity of proton(m/sec)\n", "lamda = h/(m*v) #de Broglie wavelength(m)\n", "\n", "#Result\n", "print \"de Broglie wavelength of proton is\",round(lamda/1e-14,3),\"*10^-14 m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "de Broglie wavelength of proton is 1.323 *10^-14 m\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.2, Page number 3.12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "V = 400 #potential(V)\n", "\n", "#Calculation\n", "lamda = 12.26/math.sqrt(V) #de Broglie wavelength(angstrom)\n", "\n", "#Result\n", "print \"de Broglie wavelength of electron is\",lamda,\"angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "de Broglie wavelength of electron is 0.613 angstrom\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.3, Page number 3.13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "m = 1.674*10**-27 #mass of neutron(kg)\n", "h = 6.626*10**-34 #planck's constant\n", "e = 1.6*10**-19\n", "KE = 0.025 #kinetic energy(eV)\n", "\n", "#Calculation\n", "E = KE*e #kinetic energy(J)\n", "lamda = h/math.sqrt(2*m*E) #de Broglie wavelength(m)\n", "lamda_nm = lamda*10**9 #de Broglie wavelength(nm)\n", "lamda_nm = math.ceil(lamda_nm*10**4)/10**4 #rounding off to 4 decimals\n", "\n", "#Result\n", "print \"de Broglie wavelength is\",lamda_nm,\"nm\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "de Broglie wavelength is 0.1811 nm\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.4, Page number 3.14" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "V = 1600 #potential(V)\n", "\n", "#Calculation\n", "lamda = 12.26/math.sqrt(V) #de Broglie wavelength(angstrom)\n", "\n", "#Result\n", "print \"de Broglie wavelength of electron is\",lamda,\"angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "de Broglie wavelength of electron is 0.3065 angstrom\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.5, Page number 3.18" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "delta_x = 0.2 #electron distance(angstrom)\n", "h = 6.626*10**-34 #planck's constant\n", "\n", "#Calculation\n", "delta_x = delta_x*10**-10 #electron distance(m)\n", "delta_p = h/(2*math.pi*delta_x) #uncertainity in momentum(kg.m/s)\n", "\n", "#Result\n", "print \"uncertainity in momentum is\",round(delta_p/1e-24,3),\"*10^-24 kg m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " uncertainity in momentum is 5.273 *10^-24 kg m/s\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.6, Page number 3.27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "n1 = 1\n", "n2 = 1\n", "n3 = 1 #for lowest energy\n", "e = 1.6*10**-19\n", "h = 6.62*10**-34 #planck's constant\n", "m = 9.1*10**-31 #mass of electron(kg)\n", "L = 0.1 #side of box(nm)\n", "\n", "#Calculation\n", "L = L*10**-9 #side of box(m)\n", "E1 = h**2*(n1**2+n2**2+n3**2)/(8*m*L**2) #lowest energy(J)\n", "E1 = E1/e #lowest energy(eV)\n", "E1 = math.ceil(E1*10)/10 #rounding off to 1 decimal\n", "\n", "#Result\n", "print \"lowest energy of electron is\",E1,\"eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "lowest energy of electron is 112.9 eV\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.7, Page number 3.27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "n1 = 1\n", "n2 = 1\n", "n3 = 2 #for level next to the lowest\n", "e = 1.6*10**-19\n", "h = 6.62*10**-34 #planck's constant\n", "m = 9.1*10**-31 #mass of electron(kg)\n", "L = 0.1 #side of box(nm)\n", "\n", "#Calculation\n", "L = L*10**-9 #side of box(m)\n", "E1 = h**2*(n1**2+n2**2+n3**2)/(8*m*L**2) #lowest energy(J)\n", "E1 = E1/e #lowest energy(eV)\n", "E1 = math.ceil(E1*10**2)/10**2 #rounding off to 2 decimals\n", "\n", "#Result\n", "print \"energy of electron is\",E1,\"eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "energy of electron is 225.75 eV\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.8, Page number 3.28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "m = 9.1*10**-31 #mass of electron(kg)\n", "h = 6.626*10**-34 #planck's constant\n", "e = 1.6*10**-19\n", "E = 2000 #energy(eV)\n", "\n", "#Calculation\n", "E = E*e #energy(J)\n", "lamda = h/math.sqrt(2*m*E) #wavelength(m)\n", "lamda_nm = lamda*10**9 #velength(nm)\n", "lamda_nm = math.ceil(lamda_nm*10**4)/10**4 #rounding off to 4 decimals\n", "\n", "#Result\n", "print \"wavelength is\",lamda_nm,\"nm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wavelength is 0.0275 nm\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.9, Page number 3.28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "n = 1 #for minimum energy\n", "h = 6.626*10**-34 #planck's constant(J sec)\n", "m = 9.91*10**-31 #mass of electron(kg)\n", "L = 4*10**-10 #side of box(m)\n", "\n", "#Calculation\n", "E1 = ((h**2)*(n**2))/(8*m*(L**2)) #lowest energy(J)\n", "E1 = E1*10**18;\n", "E1 = math.ceil(E1*10**4)/10**4 #rounding off to 4 decimals\n", "\n", "#Result\n", "print \"energy of electron is\",E1,\"*10**-18 J\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "energy of electron is 0.3462 *10**-18 J\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.10, Page number 3.29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "n1 = 1 #for ground state\n", "n2 = 2 #for 1st excited state\n", "n3 = 3 #for 2nd excited state\n", "h = 6.626*10**-34 #planck's constant(J sec)\n", "m = 9.1*10**-31 #mass of electron(kg)\n", "L = 1*10**-10 #width(m)\n", "\n", "#Calculation\n", "E1 = h**2*n1**2/(8*m*L**2) #energy in ground state(J)\n", "E2 = n2**2*E1 #energy in 1st excited state(J)\n", "E3 = n3**2*E1 #energy in 2nd excited state(J)\n", "\n", "#Result\n", "print \"energy in ground state is\",round(E1/1e-18,3),\"*10^-18 J\"\n", "print \"energy in 1st excited state is\",round(E2/1e-17,3),\"*10^-17 J\"\n", "print \"energy in 2nd excited state is\",round(E3/1e-17,3),\"*10^-17 J\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "energy in ground state is 6.031 *10^-18 J\n", "energy in 1st excited state is 2.412 *10^-17 J\n", "energy in 2nd excited state is 5.428 *10^-17 J\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.11, Page number 3.30" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "h = 6.626*10**-34 #planck's constant(J sec)\n", "m = 9.1*10**-31 #mass of electron(kg)\n", "e = 1.6*10**-19\n", "lamda = 1.66*10**-10 #wavelength(m)\n", "\n", "#Calculation\n", "v = h/(m*lamda) #velocity of electron(m/sec)\n", "v_km = v*10**-3 #velocity of electron(km/sec)\n", "KE = (1/2)*m*v**2 #kinetic energy(J)\n", "KE_eV = KE/e #kinetic energy(eV)\n", "KE_eV = math.ceil(KE_eV*10**3)/10**3 #rounding off to 3 decimals\n", "\n", "#Result\n", "print \"velocity of electron is\",int(v_km),\"km/sec\"\n", "print \"kinetic energy of electron is\",KE_eV,\"eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "velocity of electron is 4386 km/sec\n", "kinetic energy of electron is 54.714 eV\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.12, Page number 3.31" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "V = 15 #potential(kV)\n", "\n", "#Calculation\n", "V = V*10**3 #potential(V)\n", "lamda = 12.26/math.sqrt(V) #de Broglie wavelength(angstrom)\n", "lamda = math.ceil(lamda*100)/100 #rounding off to 2 decimals\n", "\n", "#Result\n", "print \"wavelength of electron waves is\",lamda,\"angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wavelength of electron waves is 0.11 angstrom\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.13, Page number 3.31" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "V = 344 #potential(V)\n", "n = 1 #for 1st reflection maximum\n", "theta = 60 #glancing angle(degrees)\n", "\n", "#Calculation\n", "lamda = 12.26/math.sqrt(V) #de Broglie wavelength(angstrom)\n", "lamda_m = lamda*10**-10 #de Broglie wavelength(m)\n", "theta = theta*math.pi/180 ##glancing angle(radians)\n", "d = n*lamda_m/(2*math.sin(theta)) #interatomic spacing(m)\n", "d = d*10**10 #interatomic spacing(angstrom)\n", "d = math.ceil(d*10**5)/10**5 #rounding off to 5 decimals\n", "\n", "#Result\n", "print \"interatomic spacing of crystal is\",d,\"angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "interatomic spacing of crystal is 0.38164 angstrom\n" ] } ], "prompt_number": 21 } ], "metadata": {} } ] }