{ "metadata": { "name": "", "signature": "sha256:dac7a0b06f622e783ea6c469bf1c100c0c8157cc5e77bffea65e378f258808b2" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 12:Fibre Optics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.1 , Page no:360" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "u1=1.563; #refractive index of core\n", "u2=1.498; #refractive index of cladding\n", "\n", "#calculate\n", "d=(u1-u2)/u1; #calculation of fractional index change\n", "\n", "#result\n", "print\"The fractional index change for a given optical fibre is =\",round(d,4);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The fractional index change for a given optical fibre is = 0.0416\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.2 , Page no:360" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "u1=1.55; #refractive index of core\n", "u2=1.50; #refractive index of cladding\n", "\n", "#calculate\n", "d=(u1-u2)/u1; #calculation of fractional index change\n", "NA=u1*math.sqrt(2*d); #calculation of numerical aperture\n", "theta=math.asin(NA); #calculation of acceptance angle\n", "theta1=theta*180/3.14;\n", "\n", "#result\n", "print\"The numerical aperture of the fibre is NA=\",round(NA,3);\n", "print\"The acceptance angle of the optical fibre is =\",round(theta1,2),\"degree\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The numerical aperture of the fibre is NA= 0.394\n", "The acceptance angle of the optical fibre is = 23.2 degree\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.3 , Page no:360" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "u1=1.563; #refractive index of core\n", "u2=1.498; #refractive index of cladding\n", "\n", "#calculate\n", "NA=math.sqrt(u1**2-u2**2); #calculation of numerical aperture\n", "theta=math.asin(NA); #calculation of acceptance angle\n", "theta1=theta*180/3.14;\n", "#result\n", "print\"The numerical aperture of the fibre is NA=\",round(NA,4);\n", "print\"The acceptance angle of the optical fibre is =\",round(theta1,2),\"degree\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The numerical aperture of the fibre is NA= 0.4461\n", "The acceptance angle of the optical fibre is = 26.5 degree\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.4 , Page no:360" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "NA=0.39; #numerical aperture of the optical fibre\n", "d=0.05; #difference in the refractive index of the material of the core and cladding\n", "\n", "#calculate\n", "#since NA=u1*sqrt(2*d)\n", "#we have u1=NA/sqrt(2*d)\n", "u1= NA/math.sqrt(2*d); #calculation of refractive index of material of the core\n", "\n", "#result\n", "print\"The refractive index of material of the core is u1=\",round(u1,3);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The refractive index of material of the core is u1= 1.233\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.5 , Page no:361" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "u1=1.50; #refractive index of core\n", "u2=1.45; #refractive index of cladding\n", "\n", "#calculate\n", "d=(u1-u2)/u1; #calculation of fractional index change\n", "NA=u1*math.sqrt(2*d); #calculation of numerical aperture\n", "theta_0=math.asin(NA); #calculation of acceptance angle\n", "theta_01=theta_0*180/3.14;\n", "theta_c=math.asin(u2/u1); #calculation of critical angle\n", "theta_c1=theta_c*180/3.14;\n", "\n", "#result\n", "print\"The numerical aperture of the fibre is NA=\",round(NA,3);\n", "print\"The acceptance angle of the optical fibre is =\",round(theta_01,2),\"degree\";\n", "print\"The critical angle of the optical fibre is =\",round(theta_c1,2),\"degree\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The numerical aperture of the fibre is NA= 0.387\n", "The acceptance angle of the optical fibre is = 22.8 degree\n", "The critical angle of the optical fibre is = 75.2 degree\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.6 , Page no:361" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "NA=0.33; #numerical aperture\n", "d=0.02; #difference in the refractive index of the core and cladding of the material\n", "\n", "#calculate\n", "#since NA=u1*sqrt(2*d)\n", "#therefore we have\n", "u1=NA/math.sqrt(2*d); #calculation of refractive index of the core\n", "#since d=(u1-u2)/u2\n", "#therefore we have\n", "u2=(1-d)*u1; #calculation of refractive index of the cladding\n", "\n", "#result\n", "print\"The refractive index of the core is u1=\",round(u1,2);\n", "print\"The refractive index of the cladding is u2=\",round(u2,3);\n", "print \"NOTE: The answer in the textbook is wrong\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The refractive index of the core is u1= 1.65\n", "The refractive index of the cladding is u2= 1.617\n", "NOTE: The answer in the textbook is wrong\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.7 , Page no:361" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "u1=3.5; #refractive index of core\n", "u2=3.45; #refractive index of cladding\n", "u0=1; #refractive index of the air\n", "\n", "#calculate\n", "NA=math.sqrt(u1**2-u2**2); #calculation of numerical aperture\n", "NA1=NA/u0;\n", "alpha=math.asin(NA); #calculation of acceptance angle\n", "alpha1=alpha*180/3.14;\n", "#result\n", "print\"The numerical aperture of the fibre is NA=\",round(NA1,2);\n", "print\"The acceptance angle of the optical fibre is =\",round(alpha1,2),\"degree\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The numerical aperture of the fibre is NA= 0.59\n", "The acceptance angle of the optical fibre is = 36.14 degree\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.8 , Page no:361" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "u1=1.48; #refractive index of core\n", "u2=1.45; #refractive index of cladding\n", "\n", "#calculate\n", "NA=math.sqrt(u1**2-u2**2); #calculation of numerical aperture\n", "theta=math.asin(NA); #calculation of acceptance angle\n", "theta1=theta*180/3.14;\n", "#result\n", "print\"The numerical aperture of the fibre is NA=\",round(NA,3);\n", "print\"The acceptance angle of the optical fibre is =\",round(theta1,2),\"degree\";\n", "print \" (roundoff error)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The numerical aperture of the fibre is NA= 0.296\n", "The acceptance angle of the optical fibre is = 17.26 degree\n", " (roundoff error)\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }