{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 5:Quantum Mechanics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3.1, Page number 5-5" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "m = 10**-2 #mass of object(kg)\n", "v = 1 #velocity(m/s)\n", "l = 1*10**-10 #wavelength(m)\n", "d = 10**-3 #distance travelled(m)\n", "\n", "#Calculations\n", "lamda = h/(m*v)\n", "\n", "v = h/(m*l)\n", "\n", "t1 = d/v\n", "t = t1/(365*24*60*60)\n", "\n", "#Results\n", "print \"de Brogile wavelength =\",round(lamda/1e-32,2),\"*10^-32 m\"\n", "print \"Velocity =\",round(v/1e-22,2),\"*10^-22 m/s(Calculation mistake in the textbook)\"\n", "print \"Distance travelled =\",round(t/1e+10,2),\"*10^10 years(Calculation mistake in the textbook)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "de Brogile wavelength = 6.63 *10^-32 m\n", "Velocity = 6.63 *10^-22 m/s(Calculation mistake in the textbook)\n", "Distance travelled = 4.78 *10^10 years(Calculation mistake in the textbook)\n" ] } ], "prompt_number": 57 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3.2, Page number 5-6" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "m = 9.1*10**-31 #mass of electron(kg)\n", "lamda = 1*10**-10 #wavelength(m)\n", "\n", "#calculation\n", "v = h/(m*lamda)\n", "\n", "#Result\n", "print \"Velocity =\",round(v/1e+6,2),\"*10^6 m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity = 7.29 *10^6 m/s\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3.3, Page number 5-6" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "m = 9.1*10**-31 #mass of electron(kg)\n", "lamda = 5000*10**-10 #wavelength(m)\n", "\n", "#calculation\n", "E = (h**2/(2*m*lamda**2))/(1.6*10**-19)\n", "\n", "#Result\n", "print \"Kinetic energy =\",round(E/1e-6,5),\"*10^-6 eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Kinetic energy = 6.03804 *10^-6 eV\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3.4, Page number 5-7" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "m = 1.676*10**-27 #mass of object(kg)\n", "E = 0.025*1.6*10**-19 #energy(J)\n", "\n", "#Calculation\n", "lamda = h/math.sqrt(2*m*E)\n", "\n", "#Result\n", "print \"Wavelength =\",round(lamda/1e-10,2),\"A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength = 1.81 A\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3.5, Page number 5-7" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "m = 9.1*10**-31 #mass of electron(kg)\n", "E = 120*1.6*10**-19 #energy(J)\n", "\n", "#Calculation\n", "lamda = h/math.sqrt(2*m*E)\n", "\n", "#Result\n", "print \"Wavelength =\",round(lamda/1e-10,2),\"A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength = 1.12 A\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3.6, Page number 5-7" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "m = 1.67*10**-27 #mass of neutron(kg)\n", "lamda = 1*10**-10 #wavelength(m)\n", "\n", "#calculation\n", "v = h/(m*lamda)\n", "\n", "E = (h**2/(2*m*lamda**2))/(1.6*10**-19)\n", "\n", "#Result\n", "print \"Velocity =\",round(v,2),\"m/s\"\n", "print \"Kinetic energy =\",round(E/1e-2,3),\"*10^-2 eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity = 3970.06 m/s\n", "Kinetic energy = 8.225 *10^-2 eV\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3.7, Page number 5-8" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "m = 1 #mass of object(kg)\n", "v = 1 #velocity(m/s)\n", "V = 182 #potential differnce(V)\n", "\n", "#Calculation\n", "#Case i\n", "lamda = 12.27/math.sqrt(V)\n", "\n", "#Case ii\n", "l = h/(m*v)\n", "\n", "#Results\n", "print \"de Brogile wavelength for accelerated electron=\",round(lamda,2),\"A\"\n", "print \"de Brogile wavelength for object=\",l,\"A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "de Brogile wavelength for accelerated electron= 0.91 A\n", "de Brogile wavelength for object= 6.63e-34 A\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3.8, Page number 5-9" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "m = 9.1*10**-31 #mass of electron(kg)\n", "lamda = 10**-14 #wavelength(m)\n", "\n", "#Calculations\n", "p = h/lamda\n", "\n", "E = (p**2/(2*m))/(1.6*10**-13)\n", "\n", "#Results\n", "print \"Momentum =\",p,\"kg-m/s\"\n", "print \"Energy =\",round(E,2),\"MeV\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Momentum = 6.63e-20 kg-m/s\n", "Energy = 15095.09 MeV\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3.9, Page number 5-10" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "V = 3000 #potential differnce(V)\n", "\n", "#Calculation\n", "#Case i\n", "lamda = 12.27/math.sqrt(V)\n", "\n", "#Case ii\n", "p = h/(lamda*10**-10)\n", "\n", "#Case iii\n", "lamda_b = 1/(lamda*10**-10)\n", "\n", "#Case iv\n", "d = 2.04*10**-10 #m\n", "n = 1 #for first order\n", "theta = math.degrees(math.asin((n*lamda*10**-10)/(2*d)))\n", "\n", "#Results\n", "print \"Momentum =\",round(p/1e-23,2),\"*10^-23 kg-m/s\"\n", "print \"de Brogile wavelength =\",round(lamda,3),\"A\"\n", "print \"Wave number =\",round(lamda_b/1e+10,3),\"*10^10 /m\"\n", "print \"Bragg angle =\",round(theta,3),\"degrees\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Momentum = 2.96 *10^-23 kg-m/s\n", "de Brogile wavelength = 0.224 A\n", "Wave number = 4.464 *10^10 /m\n", "Bragg angle = 3.147 degrees\n" ] } ], "prompt_number": 55 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3.10, Page number 5-11" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "V = 10*10**3 #potential differnce(V)\n", "\n", "#Calculation\n", "lamda = 12.27/math.sqrt(V)\n", "\n", "p = h/(lamda*10**-10)\n", "\n", "#result\n", "print \"Wavelength =\",lamda,\"A\"\n", "print \"Momentum =\",round(p/1e-23,3),\"*10^-23 kg-m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength = 0.1227 A\n", "Momentum = 5.403 *10^-23 kg-m/s\n" ] } ], "prompt_number": 49 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3.12, Page number 5-12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "m = 6.68*10**-27 #mass of particle(kg)\n", "E = 1.6*10**-16 #energy(J)\n", "\n", "#Calculations\n", "lamda = h/math.sqrt(2*m*E)\n", "\n", "v = h/(m*lamda)\n", "\n", "#Results\n", "print \"Wavelength =\",round(lamda/1e-13,3),\"*10^-13 A\"\n", "print \"Velocity =\",round(v/1e+5,2),\"*10^5 m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength = 4.535 *10^-13 A\n", "Velocity = 2.19 *10^5 m/s\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3.13, Page number 5-12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "c = 3*10**8 #velocity of light(m/s)\n", "m = 9.1*10**-31 #mass of electron(kg)\n", "E = 1.6*10**-19 #energy(J)\n", "\n", "#Calculations\n", "lamda_ph = (h*c)/E #wavelength of photon\n", " \n", "lamda_e = h/math.sqrt(2*m*E) #wavelength of electron\n", "\n", "#Result\n", "print \"Wavelength of proton =\",round(lamda_ph/1e-6,3),\"*10^-6 m\"\n", "print \"Wavelength of electron =\",round(lamda_e/1e-10,3),\"A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength of proton = 1.243 *10^-6 m\n", "Wavelength of electron = 12.286 A\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3.14, Page number 5-13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "c = 3*10**8 #velocity of light(m/s)\n", "m = 9.1*10**-31 #mass of electron(kg)\n", "\n", "#Calculations\n", "E = m*c**2\n", "lamda = h/math.sqrt(2*m*E)\n", "\n", "#Result\n", "print \"de Brogile wavelength =\",round(lamda/1e-12,3),\"*10^-12 m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "de Brogile wavelength = 1.717 *10^-12 m\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.7.1, Page number 5-26" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "m = 9.1*10**-31 #mass of electron(kg)\n", "del_v = (0.01*400)/100\n", "\n", "#Calculation\n", "del_x = h/(4*math.pi*m*del_v)\n", "\n", "#Result\n", "print \"Accuracy =\",round(del_x/1e-3,2),\"mm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Accuracy = 1.45 mm\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.7.2, Page number 5-27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "m = 9.1*10**-31 #mass of electron(kg)\n", "del_x = 10*10**-9 #m\n", "E = 1.6*10**-16 #energy(J)\n", "\n", "#Calculation\n", "del_px = h/(4*math.pi*del_x)\n", "p = math.sqrt(2*m*E)\n", "per = (del_px/p)*100\n", "\n", "#Result\n", "print \"Percentage of uncertainity =\",round(per,4),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Percentage of uncertainity = 0.0309 %\n" ] } ], "prompt_number": 32 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.7.3, Page number 5-27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "m = 9.1*10**-31 #mass of electron(kg)\n", "del_v = (0.01*4*10**5)/100\n", "\n", "#Calculation\n", "del_x = h/(4*math.pi*m*del_v)\n", "\n", "#Result\n", "print \"Accuracy =\",round(del_x/1e-6,2),\"*10^-6 m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Accuracy = 1.45 *10^-6 m\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.7.4, Page number 5-27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "m = 9.1*10**-31 #mass of electron(kg)\n", "del_v = (1.88*10**6)/100\n", "\n", "#Calculation\n", "del_x = h/(4*math.pi*m*del_v)\n", "\n", "#Result\n", "print \"Precision =\",round(del_x/1e-9,3),\"*10^-9 m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Precision = 3.084 *10^-9 m\n" ] } ], "prompt_number": 39 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.7.5, Page number 5-28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable declaration\n", "lamda = 4*10**-7 #wavelength(m)\n", "c = 3*10**8 #velocity of light(m/s)\n", "del_l = 8*10**-15 #spectral width(m)\n", "\n", "#calculation\n", "del_t = lamda**2/(4*math.pi*c*del_l)\n", "\n", "#Result\n", "print \"Time spent by the elctrons =\",round(del_t/1e-9,3),\"*10^-9 s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Time spent by the elctrons = 5.305 *10^-9 s\n" ] } ], "prompt_number": 44 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.7.6, Page number 5-29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "del_t = 1.4*10**-10 #time spent(s)\n", "\n", "#calculation\n", "E = (h/(4*math.pi*del_t))/(1.6*10**-19)\n", "\n", "#Result\n", "print \"Uncertainity =\",round(E/1e-6,2),\"*10^-6 eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Uncertainity = 2.36 *10^-6 eV\n" ] } ], "prompt_number": 50 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.7.7, Page number 5-29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable declaration\n", "lamda = 546*10**-9 #wavelength(m)\n", "c = 3*10**8 #velocity of light(m/s)\n", "del_l = 10**-14 #spectral width(m)\n", "\n", "#calculation\n", "del_t = lamda**2/(4*math.pi*c*del_l)\n", "\n", "#Result\n", "print \"Time spent by the elctrons =\",round(del_t/1e-9,2),\"*10^-9 s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Time spent by the elctrons = 7.91 *10^-9 s\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.15.1, Page number 5-41" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "m = 9.1*10**-31 #mass of electron(kg)\n", "L = 2*10**-10 #width(m)\n", "\n", "#Calculation\n", "E1 = (h**2/(8*m*L**2))/(1.6*10**-19)\n", "E2 = 4*E1\n", "E3 = 9*E1\n", "\n", "#Result\n", "print \"Energy of electron in ground state =\",round(E1,3),\"eV\"\n", "print \"Energy of electron in first state =\",round(E2,3),\"eV\"\n", "print \"Energy of electron in second state =\",round(E3,3),\"eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy of electron in ground state = 9.434 eV\n", "Energy of electron in first state = 37.738 eV\n", "Energy of electron in second state = 84.91 eV\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.15.2, Page number 5-42" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "L = 5.6*10**-3 #width(m)\n", "\n", "#Calculation\n", "E = L/4\n", "\n", "#Result\n", "print \"Ground state energy =\",E,\"eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ground state energy = 0.0014 eV\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.15.4, Page number 5-43" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import scipy\n", "from scipy import integrate\n", "\n", "#Variable declaration\n", "#Intervals\n", "x1 = 0\n", "x2 = 1./2\n", "\n", "#Calculation\n", "x = lambda x: 3*x**2\n", "P = integrate.quad(x, x1, x2)\n", "\n", "#Result\n", "print \"Probability =\",P[0]" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Probability = 0.125\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.15.5, Page number 5-44" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "m1 = 9.1*10**-31 #mass of electron(kg)\n", "m2 = 10**-9 #mass of grain dust(kg)\n", "L1 = 10**-9 #width(m)\n", "L2 = 10**-4 #width(m)\n", "\n", "#Calculation\n", "#For electron\n", "print \"For an electron, the lowest thre energy states obtained for n=1,2 and 3 are\"\n", "for n in range(1,4):\n", " En1 = ((n**2*h**2)/(8*m*L1**2))/(1.6*10**-19)\n", " print round(En1,4),\"eV\"\n", " \n", "#For the grain of dust\n", "print \"\\nFor a grain of dust, the lowest thre energy states obtained for n=1,2 and 3 are\"\n", "for n in range(1,4):\n", " En2 = ((n**2*h**2)/(8*m2*L2**2))/(1.6*10**-19)\n", " print round(En2/1e-32,3),\"eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "For an electron, the lowest thre energy states obtained for n=1,2 and 3 are\n", "0.3774 eV\n", "1.5095 eV\n", "3.3964 eV\n", "\n", "For a grain of dust, the lowest thre energy states obtained for n=1,2 and 3 are\n", "3.434 eV\n", "13.737 eV\n", "30.907 eV\n" ] } ], "prompt_number": 41 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.15.6, Page number 5-45\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "m = 9.1*10**-31 #mass of electron(kg)\n", "E1 = 38*1.6*10**-19 #energy(J)\n", "\n", "#Calculation\n", "L = math.sqrt(h**2/(8*m*E1))\n", " \n", "#Result\n", "print \"Width of well =\",round(L/1e-10,4),\"A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Width of well = 0.9965 A\n" ] } ], "prompt_number": 48 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.15.7, Page number 5-45" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "h = 6.63*10**-34 #Planck's constant(J-s)\n", "m = 9.1*10**-31 #mass of electron(kg)\n", "L = 5*10**-10 #width(m)\n", "n1 = 1\n", "n2 = 2\n", "c = 3*10**8 #velocity of light(m/s)\n", "\n", "#Calculation\n", "E = ((3*h**2)/(8*m*L**2)) #E2-E1\n", "Ev = E/(1.6-10**-19) #J\n", "lamda = (h*c)/E\n", "\n", "#Result\n", "print \"Energy =\",round(Ev/1e-19,2),\"eV\"\n", "print \"Wavelength =\",round(lamda/1e-7,3),\"*10^-7 m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy = 4.53 eV\n", "Wavelength = 2.745 *10^-7 m\n" ] } ], "prompt_number": 55 } ], "metadata": {} } ] }