{ "metadata": { "name": "", "signature": "sha256:2419f2161da8f36d7fa10fabb5f5aa4b318a9912237faaa5f03ac922aa4b8ac9" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 10:Superconductivity" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.1 , Page no:313" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "Tc=7.2; #in K (critical temperature)\n", "T=5; #in K (given temperature)\n", "H0=6.5E3; #in A/m (critical magnetic field at 0K)\n", "\n", "#calculate\n", "Hc=H0*(1-(T/Tc)**2); #calculation of magnitude of critical magnetic field\n", "\n", "#result\n", "print\"The magnitude of critical magnetic field is Hc=\",round(Hc,2),\"A/m\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The magnitude of critical magnetic field is Hc= 3365.35 A/m\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.2 , Page no:313" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "r=0.02; #in m (radius of ring)\n", "Hc=2E3; #in A/m (critical magnetic field at 5K)\n", "pi=3.14; #value of pi used in the solutiion\n", "\n", "#calculate\n", "Ic=2*pi*r*Hc; #calculation of critical current value\n", "\n", "#result\n", "print\"The critical current value is Ic=\",Ic,\"A\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The critical current value is Ic= 251.2 A\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.3 , Page no:313" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "M1=199.5; #in amu (isotropic mass at 5K)\n", "T1=5; #in K (first critical temperature)\n", "T2=5.1; #in K (second critical temperature)\n", "#calculate\n", "#since Tc=C*(1/sqrt(M)\n", "#therefore T1*sqrt(M1)=T2*sqrt(M2)\n", "#therefore we have M2=(T1/T2)^2*M1\n", "M2=(T1/T2)**2*M1; #calculation of isotropic mass at 5.1K\n", "\n", "#result\n", "print\"The isotropic mass at 5.1K is M2=\",round(M2,3),\"a.m.u.\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The isotropic mass at 5.1K is M2= 191.753 a.m.u.\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.4 , Page no:314" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "T=6; #in K (given temperature)\n", "Hc=5E3; #in A/m (critical magnetic field at 5K)\n", "H0=2E4; #in A/m (critical magnetic field at 0K)\n", "\n", "#calculate\n", "#since Hc=H0*(1-(T/Tc)^2)\n", "#therefor we have Tc=T/sqrt(1-(Hc/H)^2)\n", "Tc=T/math.sqrt(1-(Hc/H0)); #calculation of transition temperature\n", "\n", "#result\n", "print\"The transition temperature is Tc=\",round(Tc,3),\"K\";\n", "print \"NOTE: The answer in the textbook is wrong\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The transition temperature is Tc= 6.928 K\n", "NOTE: The answer in the textbook is wrong\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.5 , Page no:314" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "T=5; #in K (given temperature)\n", "d=3; #in mm (diameter of the wire)\n", "Tc=8; #in K (critical temperature for Pb)\n", "H0=5E4; #in A/m (critical magnetic field at 0K)\n", "pi=3.14; #value of pi used in the solution\n", "\n", "#calculate\n", "Hc=H0*(1-(T/Tc)**2); #calculation of critical magnetic field at 5K\n", "r=(d*1E-3)/2; #calculation of radius in m\n", "Ic=2*pi*r*Hc; #calculation of critical current at 5K\n", "\n", "#result\n", "print\"The critical magnetic field at 5K is Hc=\",'%.3E'%Hc,\"A/m\";\n", "print\"The critical current at 5K is Ic=\",round(Ic,4),\"A\";\n", "print \" (roundoff error)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The critical magnetic field at 5K is Hc= 3.047E+04 A/m\n", "The critical current at 5K is Ic= 287.0156 A\n", " (roundoff error)\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.6 , Page no:314" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "V=8.50; #in micro V (voltage across Josephson junction )\n", "e=1.6E-19; #in C (charge of electron)\n", "h=6.626E-34; #in J/s (Planck\u2019s constant)\n", "\n", "#calculate\n", "V=V*1E-6; #changing unit from V to microVolt\n", "v1=2*e*V/h; #calculation of frequency of EM waves\n", "\n", "#result\n", "print\"The frequency of EM waves is v=\",'%.3E'%v1,\"Hz\";\n", "print \"NOTE: The answer in the textbook is wrong\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The frequency of EM waves is v= 4.105E+09 Hz\n", "NOTE: The answer in the textbook is wrong\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.7 , Page no:315" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "M1=200.59; #in amu (average atomic mass at 4.153K)\n", "Tc1=4.153; #in K (first critical temperature)\n", "M2=204; #in amu (average atomic mass of isotopes)\n", "\n", "#calculate\n", "#since Tc=C*(1/sqrt(M)\n", "#therefore T1*sqrt(M1)=T2*sqrt(M2)\n", "#therefore we have Tc2=Tc1*sqrt(M1/M2)\n", "Tc2=Tc1*math.sqrt(M1/M2); #calculation of transition temperature of the isotopes\n", "\n", "#result\n", "print\"The transition temperature of the isotopes is Tc2=\",round(Tc2,3),\"K\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The transition temperature of the isotopes is Tc2= 4.118 K\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }