{ "metadata": { "name": "", "signature": "sha256:5117f9d565431f3f25738652845b14f8a6fa036b5c0992b0b2e5d69631937306" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 7:Dielectric Properties" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.1 , Page no:187" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "A=100; #in cm^2 (cross-sectional area)\n", "d=1; #in cm (seperation between plates)\n", "Eo=8.85E-12; #in F/m (absolute permittivity)\n", "V=100; #in V (potential difference)\n", "\n", "#calculate\n", "A1=A*1E-4; #changing unit from cm^2 to m^2\n", "d1=d*1E-2; #changing unit from cm to m\n", "C=Eo*A1/d1; #calculation of capacitance\n", "Q=C*V; #calculation of charge\n", "C1=C*1E12; #changing unit of capacitance from F to pF\n", "\n", "#result\n", "print\"The capacitance of capacitor is C=\",C,\"C\";\n", "print\"\\t\\t\\t\\t =\",C1,\"C\";\n", "print\"The charge on the plates is Q=\",Q,\"C\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The capacitance of capacitor is C= 8.85e-12 C\n", "\t\t\t\t = 8.85 C\n", "The charge on the plates is Q= 8.85e-10 C\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.2 , Page no:187" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "A=650; #in mm^2 (cross-sectional area)\n", "d=4; #in mm (seperation between plates)\n", "Eo=8.85E-12; #in F/m (absolute permittivity)\n", "Er=3.5; #di-electric constant of the material\n", "Q=2E-10; #in C (charge on plates)\n", "\n", "#calculate\n", "A1=A*1E-6; #changing unit from mm^2 to m^2\n", "d1=d*1E-3; #changing unit from mm to m\n", "C=Er*Eo*A1/d1; #calculation of capacitance\n", "V=Q/C; #calculation of charge\n", "C1=C*1E12; #changing unit of capacitance from F to pF\n", "\n", "#result\n", "print\"The capacitance of capacitor is C=\",C,\"C\",\n", "print\"\\n\\t\\t\\t =\",C1,\"pF\";\n", "print\"The resultant voltage across the capacitor is V=\",round(V,3),\"V\";\n", "print \"NOTE: The answer in the textbook is wrong\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The capacitance of capacitor is C= 5.0334375e-12 C \n", "\t\t\t = 5.0334375 pF\n", "The resultant voltage across the capacitor is V= 39.734 V\n", "NOTE: The answer in the textbook is wrong\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.3 , Page no:188" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "N=2.7E25; #in 1/m^3 (density of atoms)\n", "E=1E6; #in V/m (electric field)\n", "Z=2; #atomic number of Helium \n", "Eo=8.85E-12; #in F/m (absolute permittivity)\n", "Er=1.0000684; #(dielectric constant of the material)\n", "e=1.6E-19; #in C (charge of electron)\n", "pi=3.14; #value of pi used in the solution\n", "\n", "#calculate\n", "#since alpha=Eo*(Er-1)/N=4*pi*Eo*r_0^3 \n", "#Therefore we have r_0^3=(Er-1)/(4*pi*N)\n", "r_0=((Er-1)/(4*pi*N))**(1/3); #calculation of radius of electron cloud\n", "x=4*pi*Eo*E*r_0/(Z*e); #calculation of dispalcement\n", "\n", "#result\n", "print\"The radius of electron cloud is r_0=\",r_0,\"m\";\n", "print\"The displacement is x=\",x,\"m\";\n", "print \"NOTE: The answer in the textbook is wrong\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The radius of electron cloud is r_0= 5.86454377988e-11 m\n", "The displacement is x= 20371.2258874 m\n", "NOTE: The answer in the textbook is wrong\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.4 , Page no:188" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "K=1.000134; #di-elecrtic constant of the neon gas at NTP\n", "E=90000; #in V/m (electric field)\n", "Eo=8.85E-12; #in C/N-m^2 (absolute premittivity)\n", "N_A=6.023E26; #in atoms/Kg-mole (Avogadro's number)\n", "V=22.4; #in m^3 (volume of gas at NTP\n", "\n", "#calculate\n", "n=N_A/V; #calculaton of density of atoms\n", "#Since P=n*p=(k-1)*Eo*E\n", "#therefore we have\n", "p=(K-1)*Eo*E/n; #calculation of dipole moment induced\n", "alpha=p/E; #calculation of atomic polarisability\n", "\n", "#result\n", "print\"The dipole moment induced in each atom is p=\",p,\"C-m\";\n", "print\"The atomic polarisability of neon is =\",alpha,\"c-m^2/V\";\n", "print \"NOTE: The answer in the textbook is wrong\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The dipole moment induced in each atom is p= 3.96940793625e-36 C-m\n", "The atomic polarisability of neon is = 4.4104532625e-41 c-m^2/V\n", "NOTE: The answer in the textbook is wrong\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.5 , Page no:189" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "Er=3.75; #di-elecrtic constant of sulphur at 27 degree Celcius\n", "gama=1/3; #internal field constant\n", "p=2050; #in Kg/m^3 (density)\n", "M_A=32; #in amu (atomic weight of sulphur)\n", "Eo=8.85E-12; #in F/m (absolute permittivity)\n", "N=6.022E23; #Avogadro's number\n", "\n", "#calculate\n", "#Since ((Er-1)/(Er+2))*(M_A/p)=(N/(3*Eo))*alpha_e\n", "#therefore we have\n", "alpha_e=((Er-1)/(Er+2))*(M_A/p)*(3*Eo/N); #calculation of electronic polarisability of sulphur\n", "\n", "#result\n", "print\"The electronic polarisability of sulphur is =\",alpha_e,\"Fm^2 (roundoff error)\";\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The electronic polarisability of sulphur is = 3.29143088985e-37 Fm^2 (roundoff error)\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.6 , Page no:189" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "Er=1.0000684; #di-elecrtic constant of Helium gas at NTP\n", "Eo=8.85E-12; #in F/m (absolute permittivity)\n", "N=2.7E25; #number of atomsper unit volume\n", "\n", "#calculate\n", "#Since Er-1=(N/Eo)*alpha_e\n", "#therefore we have\n", "alpha_e=Eo*(Er-1)/N; #calculation of electronic polarisability of Helium\n", "\n", "#result\n", "print\"The electronic polarisability of Helium gas is =\",alpha_e,\"Fm^2 (roundoff error)\";\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The electronic polarisability of Helium gas is = 2.242e-41 Fm^2 (roundoff error)\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.7 , Page no:190" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "N=3E28; #in atoms/m^3 (density of atoms)\n", "alpha_e=1E-40; #in F-m^2 (electronic polarisability)\n", "Eo=8.85E-12; #in F/m (absolute permittivity)\n", "\n", "#calculate\n", "#Since (Er-1)/(Er+2)=N*alpha_e/(3*Eo)\n", "#therefore we have\n", "Er=(2*(N*alpha_e/(3*Eo))+1)/(1-(N*alpha_e/(3*Eo)));\n", "#calculation of dielectric constant of the material\n", "\n", "#result\n", "print\"The dielectric constant of the material is Er=\",Er,\"F/m\",\n", "print \"NOTE: The answer in the book is wrong \"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The dielectric constant of the material is Er= 1.3821656051 F/m NOTE: The answer in the book is wrong \n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.8 , Page no:190" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "Er=4; #relative permittivity of sulphur\n", "Eo=8.85E-12; #in F/m (absolute permittivity)\n", "NA=2.08E3; #in Kg/m^3 (density of atoms in sulphur)\n", "\n", "#calculate\n", "#Since ((Er-1)/(Er+2))*(M_A/p)=(N/(3*Eo))*alpha_e\n", "#therefore we have\n", "alpha_e=((Er-1)/(Er+2))*(3*Eo/NA); #calculation of electronic polarisability of sulphur\n", "\n", "#result\n", "print\"The electronic polarisability of sulphur is =\",alpha_e,\"Fm^2\";\n", "print \"NOTE: The answer in the book is wrong and they used the wrong formula \" \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The electronic polarisability of sulphur is = 6.38221153846e-15 Fm^2\n", "NOTE: The answer in the book is wrong and they used the wrong formula \n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.9 , Page no:190" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "alpha1=2.5E-39; #in C^2-m/N (dielectric constant at 300K)\n", "alpha2=2.0E-39; #in C^2-m/N (dielectric constant at 400K)\n", "T1=300; #in K(first temperature)\n", "T2=400; #in K(second temperature)\n", "\n", "#calculate\n", "#since alpha=alpha_d+alpha0 and alpha0=Beta/T\n", "#therefore alpha=alpha_d+(Beta/T)\n", "#since alpha1=alpha_d+(Beta/T1) and alpha2=alpha_d+(Beta/T2)\n", "#therefore alpha1-apha2=Beta*((1/T1)-(1/T2))\n", "#or Beta= (alpha1-apha2)/ ((1/T1)-(1/T2))\n", "Beta= (alpha1-alpha2)/ ((1/T1)-(1/T2)); #calculation of Beta\n", "alpha_d=alpha1-(Beta/T1); #calculation of polarisability due to defromation\n", "alpha0_1=Beta/T1; #calculation of polarisability due to permanent dipole moment at 300K\n", "alpha0_2=Beta/T2; #calculation of polarisability due to permanent dipole moment at 400K\n", "\n", "#result\n", "print\"The polarisability due to permanent dipole moment at 300K is =\",alpha0_1,\"C^2-m/N\";\n", "print\"The polarisability due to permanent dipole moment at 400K is =\",alpha0_2,\"C^2-m/N\";\n", "print\"The polarisability due to deformation of the molecules is =\",alpha_d,\"C^2-m/N\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The polarisability due to permanent dipole moment at 300K is = 2e-39 C^2-m/N\n", "The polarisability due to permanent dipole moment at 400K is = 1.5e-39 C^2-m/N\n", "The polarisability due to deformation of the molecules is = 5e-40 C^2-m/N\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.10 , Page no:191" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "n=1.5; #refractive index\n", "Er=5.6; #dielectric constant\n", "\n", "#calculate\n", "#since (Er-1)/(Er+2)=N*(alpha_e+alpha_i)/(3*E0) Clausius-Mossotti equation\n", "#and (n^2-1)/(n^2+2)=N*alpha_e/(3*E0) \n", "#from above two equations, we get ((n^2-1)/(n^2+2))*((Er+2)/(Er-1))=alpha_e/(alpha_e+alpha_i)\n", "#or alpha_i/ (alpha_e+alpha_i)= 1-((n^2-1)/(n^2+2))*((Er+2)/(Er-1))= (say P)\n", "#where P is fractional ionisational polarisability\n", "P=1-((n**2-1)/(n**2+2))*((Er+2)/(Er-1)); #calculation of fractional ionisational polarisability\n", "P1=P*100; #calculation of percentage of ionisational polarisability\n", "\n", "#result\n", "print\"The percentage of ionisational polarisability is =\",P1,\"percent\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The percentage of ionisational polarisability is = 51.4066496164 percent\n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }