{ "metadata": { "name": "", "signature": "sha256:177e44357417b2cfb0b476ada5b36a934225ade51d50763b09586ba8679f08fc" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 4:Crystal Diffraction" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.1 , Page no:75" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "lambda1=2.6; #in Angstrom (wavelength)\n", "theta=20; #in Degree (angle)\n", "n=2;\n", "\n", "#calculate\n", "lambda1=lambda1*1E-10; #since lambda is in Angstrom\n", "#Since 2dsin(theta)=n(lambda)\n", "#therefore d=n(lambda)/2sin(theta)\n", "d=n*lambda1/(2*math.sin(math.radians(theta)));\n", "\n", "#result\n", "print\"The spacing constant is d=\",d,\"m\";\n", "print\"\\t\\t\\td=\",d*10**10,\"Angstrom\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The spacing constant is d= 7.60189144042e-10 m\n", "\t\t\td= 7.60189144042 Angstrom\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.2 , Page no:75" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "h=1;k=1;l=0; #miller indices\n", "a=0.26; #in nanometer (lattice constant)\n", "lambda1=0.065; #in nanometer (wavelength)\n", "n=2; #order\n", "\n", "#calculate\n", "d=a/math.sqrt(h**2+k**2+l**2); #calculation of interlattice spacing\n", "#Since 2dsin(theta)=n(lambda)\n", "#therefore we have\n", "theta=math.asin(n*lambda1/(2*d));\n", "theta1=theta*180/3.14;\n", "\n", "#result\n", "print\"The glancing angle is =\",round(theta1,2),\"degree\";\n", "print \"Note: there is slight variation in the answer due to round off error\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The glancing angle is = 20.72 degree\n", "Note: there is slight variation in the answer due to round off error\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.3 , Page no:75" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "d=3.04E-10; #in mm (spacing constant)\n", "lambda1=0.79; #in Angstrom (wavelength)\n", "n=3; #order\n", "\n", "#calculate\n", "#Since 2dsin(theta)=n(lambda)\n", "#therefore we have\n", "lambda2=lambda1*1E-10; #since lambda is in angstrom\n", "theta=math.asin(n*lambda2/(2*d));\n", "theta1=theta*180/3.14;\n", "\n", "#result\n", "print\"The glancing angle is\",round(theta1,3),\"degree\";\n", "print \"Note: In question the value of d=3.04E-9 cm but in solution is using d=3.04E-10 m. So I have used d=3.04E-10 cm as used in the solution\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The glancing angle is 22.954 degree\n", "Note: In question the value of d=3.04E-9 cm but in solution is using d=3.04E-10 m. So I have used d=3.04E-10 cm as used in the solution\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.4 , Page no:76" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "d=0.282; #in nanometer (spacing constant)\n", "n=1; #order\n", "theta=8.35; #in degree (glancing angle)\n", "\n", "#calculate\n", "d=d*1E-9; #since d is in nanometer\n", "#Since 2dsin(theta)=n(lambda)\n", "#therefore we have\n", "lambda1=2*d*math.sin(math.radians(theta))/n; \n", "lambda_1=lambda1*1E10; #changing unit from m to Angstrom\n", "theta_1=90; #in degree (for maximum order theta=90)\n", "n_max=2*d*math.sin(math.radians(theta_1))/lambda1; #calculation of maximum order. \n", "\n", "#result\n", "print\"The wavelength =\",lambda1,\"m\";\n", "print\"\\t\\t=\" ,round(lambda_1,3),\"Angstrom\";\n", "print\"The maximum order possible is n=\",round(n_max);\n", "print \"Note: In question value of theta=8 degree and 35 minutes but solution uses theta=8.35 degree.So I am using theta=8.35 degree\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength = 8.19038939236e-11 m\n", "\t\t= 0.819 Angstrom\n", "The maximum order possible is n= 7.0\n", "Note: In question value of theta=8 degree and 35 minutes but solution uses theta=8.35 degree.So I am using theta=8.35 degree\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.5 , Page no:76" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "theta=6; #in degree (glancing angle)\n", "p=2170; #in Kg/m^3 (density)\n", "M=58.46; #Molecular weight of NaCl\n", "N=6.02E26; #in Kg-molecule (Avogadro's number)\n", "n=1; #order\n", "XU=1E-12; #since 1X.U.= 1E-12m\n", "\n", "#calculate\n", "d=(M/(2*N*p))**(1/3); #calclation of lattice constant\n", "#Since 2dsin(theta)=n(lambda)\n", "#therefore we have\n", "lambda1=2*d*math.sin(math.radians(theta))/n; #calculation of wavelength\n", "lambda2=lambda1/XU;\n", "\n", "#result\n", "print\"The spacing constant is d=\",d,\"m\";\n", "print\"The wavelength is =\",lambda1,\"m\";\n", "print\"\\t\\t =\",lambda2,\"X.U\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The spacing constant is d= 2.81789104396e-10 m\n", "The wavelength is = 5.89099640962e-11 m\n", "\t\t = 58.9099640962 X.U\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.6 , Page no:77" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "h=1;k=1;l=1; #miller indices\n", "a=5.63; #in Angstrom (lattice constant)\n", "theta=27.5; #in degree (Glancing angle)\n", "n=1; #order\n", "H=6.625E-34; #in J-s (Plank's constant)\n", "c=3E8; #in m/s (velocity of light)\n", "e=1.6E-19; #charge of electron\n", "\n", "#calculate\n", "d=a/math.sqrt(h**2+k**2+l**2); #calculation for interplanar spacing\n", "#Since 2dsin(theta)=n(lambda)\n", "#therefore we have\n", "lambda1=2*d*math.sin(math.radians(theta))/n; #calculation for wavelength\n", "E=H*c/(lambda1*1E-10); #calculation of Energy\n", "E1=E/e; #changing unit from J to eV\n", "\n", "#result\n", "print\"The lattice spacing is d=\",round(d,2),\"Angstrom\";\n", "print\"The wavelength is =\",round(lambda1),\"Angstrom\";\n", "print\"The energy of X-rays is E=\",E,\"J\";\n", "print\"\\t\\t\\tE=\",E1,\"eV\";\n", "print \"Note: c=3E8 m/s but in solution c=3E10 m/s \"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The lattice spacing is d= 3.25 Angstrom\n", "The wavelength is = 3.0 Angstrom\n", "The energy of X-rays is E= 6.62100284311e-16 J\n", "\t\t\tE= 4138.12677695 eV\n", "Note: c=3E8 m/s but in solution c=3E10 m/s \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.7 , Page no:77" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "V=344; #in V (accelerating voltage)\n", "theta=60; #in degree (glancing angle)\n", "m=9.1E-31; #in Kg (mass of electron)\n", "h=6.625e-34; #in J-s (Plank's constant)\n", "n=1; #order\n", "e=1.6E-19; #charge on electron\n", "\n", "#calculate\n", "#Since K=m*v^2/2=e*V\n", "#therefore v=sqrt(2*e*V/m)\n", "#since lambda=h/(m*v)\n", "#therefore we have lambda=h/sqrt(2*m*e*V)\n", "lambda1=h/math.sqrt(2*m*e*V); #calculation of lambda\n", "lambda2=lambda1*1E10; #changing unit from m to Angstrom\n", "#Since 2dsin(theta)=n(lambda)\n", "#therefore we have\n", "d=n*lambda2/(2*math.sin(math.radians(theta)));\n", "\n", "#result\n", "print\"The wavelength is =\",lambda1,\"m\";\n", "print\"\\t\\t =\",round(lambda2,2),\"Angstrom\";\n", "print\"The interplanar spacing is d=\",round(d,2),\"Angstrom\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength is = 6.61928340764e-11 m\n", "\t\t = 0.66 Angstrom\n", "The interplanar spacing is d= 0.38 Angstrom\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.8 , Page no:78" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#given\n", "K=0.02; #in eV (kinetic energy)\n", "d=2.0; #in Angstrom (Bragg's spacing)\n", "m=1.00898; #in amu (mass of neutron)\n", "amu=1.66E-27; #in Kg (1amu=1.66E-27 Kg)\n", "h=6.625e-34; #in J-s (Plank's constant)\n", "n=1; #order\n", "e=1.6E-19; #charge on electron\n", "\n", "#calculate\n", "#Since K=m*v^2/2\n", "#therefore v=sqrt(2*K/m)\n", "#since lambda=h/(m*v)\n", "#therefore we have lambda=h/sqrt(2*m*K)\n", "m=m*amu; #changing unit from amu to Kg\n", "K=K*e; #changing unit to J from eV\n", "lambda1=h/math.sqrt(2*m*K); #calculation of lambda\n", "lambda2=lambda1*1E10; #changing unit from m to Angstrom\n", "theta=math.asin(n*lambda2/(2*d)); #calculation of angle of first order diffraction maximum\n", "theta1=theta*180/3.14;\n", "#result\n", "print\"The wavelength is =\",lambda1,\"m\";\n", "print\"\\t \\t =\",round(lambda2),\"Angstrom\";\n", "print\"The angle of first order diffraction maximum is \",round(theta1),\"Degree\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength is = 2.02348771817e-10 m\n", "\t \t = 2.0 Angstrom\n", "The angle of first order diffraction maximum is 30.0 Degree\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.9 , Page no:79" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "lambda1=0.586; #in Angstrom (wavelength of X-rays)\n", "n1=1; n2=2; n3=3; #orders of diffraction\n", "theta1=5+(58/60); #in degree (Glancing angle for first order of diffraction)\n", "theta2=12+(01/60); #in degree (Glancing angle for second order of diffraction)\n", "theta3=18+(12/60); #in degree (Glancing angle for third order of diffraction)\n", "\n", "#calculate\n", "K1=math.sin(math.radians(theta1));\n", "K2=math.sin(math.radians(theta2));\n", "K3=math.sin(math.radians(theta3));\n", "#Since 2dsin(theta)=n(lambda)\n", "#therefore we have\n", "d1=n1*lambda1/(2*K1);\n", "d2=n2*lambda1/(2*K2);\n", "d3=n3*lambda1/(2*K3);\n", "d1=d1*1E-10; #changing unit from Angstrom to m\n", "d2=d2*1E-10; #changing unit from Angstrom to m\n", "d3=d3*1E-10; #changing unit from Angstrom to m\n", "d=(d1+d2+d3)/3;\n", "\n", "#result\n", "print\"The value of sine of different angle of diffraction is \\nK1=\",K1;\n", "print\"K2=\",K2;\n", "print\"K3=\",K3;\n", "#Taking the ratios of K1:K2:K3\n", "#We get K1:K2:K3=1:2:3\n", "#Therefore we have\n", "print\"Or we have K1:K2:K3=1:2:3\";\n", "print\"Hence these angles of incidence are for Ist, 2nd and 3rd order reflections respectively\";\n", "print\"The spacing constants are \\nd1=\",d1;\n", "print\"d2=\",d2;\n", "print\"d3=\",d3;\n", "print\"The mean value of crystal spacing is d=\",d,\"m\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of sine of different angle of diffraction is \n", "K1= 0.103949856225\n", "K2= 0.208196213621\n", "K3= 0.312334918512\n", "Or we have K1:K2:K3=1:2:3\n", "Hence these angles of incidence are for Ist, 2nd and 3rd order reflections respectively\n", "The spacing constants are \n", "d1= 2.81866671719e-10\n", "d2= 2.81465253286e-10\n", "d3= 2.81428667722e-10\n", "The mean value of crystal spacing is d= 2.81586864243e-10 m\n" ] } ], "prompt_number": 9 } ], "metadata": {} } ] }