{ "metadata": { "name": "", "signature": "sha256:7b7dfd33b7ab2e69421d0f26bfbfaa20f35bc1084164b445bbbc400215113c08" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 1:Bonding in Solids" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.3 , Page no:15" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "r=2; #in angstrom(distance)\n", "e=1.6E-19; # in C (charge of electron)\n", "E_o= 8.85E-12;# absolute premittivity\n", "\n", "#calculate\n", "r=2*1*10**-10; # since r is in angstrom\n", "V=-e**2/(4*3.14*E_o*r); # calculate potential\n", "V1=V/e; # changing to eV\n", "\n", "#result\n", "print \"\\nThe potential energy is V = \",V,\"J\";\n", "print \"In electron-Volt V = \",round(V1,3),\"eV\"; \n", "print \"Note: the answer in the book is wrong due to calculation mistake\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The potential energy is V = -1.15153477995e-18 J\n", "In electron-Volt V = -7.197 eV\n", "Note: the answer in the book is wrong due to calculation mistake\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.4 , Page no:15" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "#given\n", "r0=0.236; #in nanometer(interionic distance)\n", "e=1.6E-19; # in C (charge of electron)\n", "E_o= 8.85E-12;# absolute premittivity\n", "N=8; # Born constant\n", "IE=5.14;# in eV (ionisation energy of sodium)\n", "EA=3.65;# in eV (electron affinity of Chlorine)\n", "pi=3.14; # value of pi used in the solution\n", "\n", "#calculate\n", "r0=r0*1E-9; # since r is in nanometer\n", "PE=(e**2/(4*pi*E_o*r0))*(1-1/N); # calculate potential energy\n", "PE=PE/e; #changing unit from J to eV\n", "NE=IE-EA;# calculation of Net energy\n", "BE=PE-NE;# calculation of Bond Energy\n", "\n", "#result\n", "print\"The potential energy is PE= \",round(PE,2),\"eV\";\n", "print\"The net energy is NE= \",round(NE,2),\"eV\";\n", "print\"The bond energy is BE= \",round(BE,2),\"eV\";\n", "# Note: (1)-In order to make the answer prcatically feasible and avoid the unusual answer, I have used r_0=0.236 nm instead of 236 nm. because using this value will give very much irrelevant answer.\n", "# Note: (2) There is slight variation in the answer due to round off." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The potential energy is PE= 5.34 eV\n", "The net energy is NE= 1.49 eV\n", "The bond energy is BE= 3.85 eV\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.5 , Page no:16" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "r_0=.41; #in mm(lattice constant)\n", "e=1.6E-19; #in C (charge of electron)\n", "E_o= 8.85E-12; #absolute premittivity\n", "n=0.5; #repulsive exponent value\n", "alpha=1.76; #Madelung constant\n", "pi=3.14; # value of pi used in the solution\n", "\n", "#calculate\n", "r=.41*1E-3; #since r is in mm\n", "Beta=72*pi*E_o*r**4/(alpha*e**2*(n-1)); #calculation compressibility\n", "\n", "#result\n", "print\"The compressibility is\tBeta=\",round(Beta);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The compressibility is\tBeta= -2.50967916144e+15\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.6 , Page no:16" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "r_0=3.56; #in Angstrom\n", "e=1.6E-19; #in C (charge of electron)\n", "IE=3.89; #in eV (ionisation energy of Cs)\n", "EA=-3.61; #in eV (electron affinity of Cl)\n", "n=10.5; #Born constant\n", "E_o= 8.85E-12; #absolute premittivity\n", "alpha=1.763; #Madelung constant\n", "pi=3.14; #value of pi used in the solution\n", "\n", "#calculate\n", "r_0=r_0*1E-10; #since r is in nanometer\n", "U=-alpha*(e**2/(4*pi*E_o*r_0))*(1-1/n); #calculate potential energy\n", "U=U/e; #changing unit from J to eV\n", "ACE=U+EA+IE; #calculation of atomic cohesive energy\n", "\n", "#result\n", "print\"The ionic cohesive energy is \",round(U),\"eV\";\n", "print\"The atomic cohesive energy is\",round(ACE),\"eV\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The ionic cohesive energy is -6.0 eV\n", "The atomic cohesive energy is -6.0 eV\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.7 , Page no:17" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "r_0=2.81; #in Angstrom\n", "e=1.6E-19; #in C (charge of electron)\n", "n=9; #Born constant\n", "E_o= 8.85E-12; #absolute premittivity\n", "alpha=1.748; #Madelung constant\n", "pi=3.14; #value of pi used in the solution\n", "\n", "#calculate\n", "r_0=r_0*1E-10; #since r is in nanometer\n", "V=-alpha*(e**2/(4*pi*E_o*r_0))*(1-1/n); #calculate potential energy\n", "V=V/e; #changing unit from J to eV\n", "V_1=V/2; #Since only half of the energy contribute per ion to the cohecive energy therfore\n", "\n", "#result\n", "print\"The potential energy is V=\",round(V,2),\"eV\";\n", "print\"The energy contributing per ions to the cohesive energy is \",round(V_1,2),\"eV\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The potential energy is V= -7.96 eV\n", "The energy contributing per ions to the cohesive energy is -3.98 eV\n" ] } ], "prompt_number": 5 } ], "metadata": {} } ] }