{ "metadata": { "celltoolbar": "Raw Cell Format", "name": "", "signature": "sha256:9dcf8c834afbbdba5cac9bfd61902345de5a5912fe35cd8c01ac3ee021a2040e" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 3: Dielectric And Magnetic Materials" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.1,Page number 3-35" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "A=650*10**-6 #area\n", "d=4*10**-3 #seperation of plate\n", "Q=2*10**-10 #charge\n", "er=3.5 #relative permitivity\n", "\n", "e0=8.85*10**-12 #absolute permitivity\n", "\n", "V=(Q*d)/(e0*er*A)\n", "\n", "print\"voltage across capacitor =\",round(V,4),\"Volt\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "voltage across capacitor = 39.7343 Volt\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.2,Page number 3-36" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "A=2000*10**-6 #area\n", "d=0.5*10**-6 #seperation of plate\n", "er=8.0 #relative permitivity\n", "e0=8.85*10**-12 #absolute permitivity\n", "\n", "C=(e0*er*A)/d\n", "\n", "print\"capacitance for capacitor =\",\"{0:.3e}\".format(C),\"Faraday\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "capacitance for capacitor = 2.832e-07 Faraday\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.3,Page number 3-36" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "E=1000 #electric field\n", "P=4.3*10**-8 #polarization\n", "e0=8.854*10**-12 #absolute permitivity\n", "er=(P/(e0*E))+1 #as P/E=e0(er-1)\n", "\n", "print\"relative permittivity =\",round(er,4)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "relative permittivity = 5.8566\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.4,Page number 3-36" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "#As C=e0*er*A/d\n", "\n", "e0=math.e #absolute permitivity\n", "\n", "Ag=1l\n", "\n", "Ap=Ag #Assuming Area of glass plate and plastic film is same\n", "\n", "#for glass\n", "\n", "erg=6 #relative permitivity\n", "\n", "dg=0.25 #thickness\n", "\n", "Cg=e0*erg*Ag/dg\n", "\n", "#for plastic film\n", "\n", "erp=3 #relative permitivity\n", "\n", "dp=0.1 #thickness\n", "\n", "Cp=e0*erp*Ap/dp\n", "\n", "m=Cg/Cp\n", "\n", "print\"since Cg/Cp=\",m\n", "\n", "print\"plastic film holds more charge\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "since Cg/Cp= 0.8\n", "plastic film holds more charge\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.5,Page number 3-37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "N=2.7*10**25 #no of atoms per m**3\n", "er=1.0000684 #dielectric constant of He atom at NTP\n", "e0=8.854*10**-12 #absolute permitivity\n", "\n", "a=e0*(er-1.0)/N #electronic polarizability\n", "\n", "print\"1) electronic polarizability=\",\"{0:.3e}\".format(a)\n", "\n", "R=(a/(4*3.1472*e0))**(1.0/3) #radius of helium atom\n", "\n", "print\"2) radius of He atoms =\",\"{0:.3e}\".format(R),\"meter\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1) electronic polarizability= 2.243e-41\n", "2) radius of He atoms = 5.860e-11 meter\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.6,Page number 3-37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "er=1.000014 #dielectric constant of He atom at NTP\n", "Xe=er-1.0 #electric susceptibility\n", "\n", "print\"electric susceptibility =\",(Xe)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "electric susceptibility = 1.4e-05\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.7,Page number 3-37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "T=300 #temperature of paramagnetic material\n", "X=3.7*10**-3 #susceptibility of material\n", "\n", "C=X*T #using Curie's law\n", "\n", "T1=250 #temperature\n", "T2=600 #temperature\n", "\n", "u1=C/T1 #relative permeability of material at 250k\n", "\n", "u2=C/T2 #relative permeability of material at 350k\n", "\n", "print\"relative permeability at temp 250K=\",\"{0:.3e}\".format(u1)\n", "\n", "print\"relative permeability at temp 600K =\",\"{0:.3e}\".format(u2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "relative permeability at temp 250K= 4.440e-03\n", "relative permeability at temp 600K = 1.850e-03\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.8,Page number 3-38" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "u=0.8*10**-23 #magnetic dipole moment of an atom \n", "B=0.8 #magnetic field\n", "K=1.38*10**-23 #boltzmann constant\n", "\n", "T=(2*u*B)/(3*K) #temperature\n", "\n", "print\"Temperature at which average thermal energy of an atom is equal to magntic energy=\",round(T,4),\"K\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Temperature at which average thermal energy of an atom is equal to magntic energy= 0.3092 K\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.9,Page number 3-38" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "B=0.5 #magnetic field\n", "t=27 #temperature in degree celcius\n", "T=273+t #temperature in kelvin\n", "\n", "u0=4*math.pi*10**-7 #permeability of free space\n", "\n", "C=2*10**-3 #Curie's constant\n", "\n", "M=(C*B)/(u0*T) #magnetization of material\n", "\n", "print\"magnetization of paramagnetic material =\",round(M,4),\"A/m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "magnetization of paramagnetic material = 2.6526 A/m\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.10,Page number 3-38" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "u0=4*math.pi*10**-7 #permeability of free space\n", "B=10.9*10**-5 #flux density\n", "\n", "H=B/u0 #magnetic field\n", "\n", "print\"Horizontal component of magnetic field =\",round(H,4),\"A-m\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Horizontal component of magnetic field = 86.7394 A-m\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.11,Page number 3-39" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "phi=5.9*10**-3 #magnetic flux\n", "ur=900 #relative permeability of material\n", "n=700 #number of turns\n", "\n", "u0=4*math.pi*10**-7 #permeability of free space\n", "\n", "A=60*10**-4 #cross section area of ring\n", "\n", "l=2 #mean circumference of ring\n", "\n", "B=phi/A #flux density\n", "\n", "H=B/(u0*ur) #magnetic field\n", "\n", "At=H*l #Amp-turns required\n", "\n", "I=At/n #current required\n", "\n", "print\"Current required to produce a flux=\",round(I,4),\"Amp\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Current required to produce a flux= 2.4842 Amp\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.12,Page number 3-39" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "phi=2.7*10**-3 #magnetic flux\n", "A=25*10**-4 #cross section area of ring\n", "r=25*10**-2 #mean circumference of ring\n", "la=10**-3 #air gap\n", "\n", "ur=900 #relative permeability of material\n", "n=400 #number of turns\n", "\n", "u0=4*math.pi*10**-7 #permeability of free space\n", "\n", "d=40*10**-2 #mean diameter of ring\n", "\n", "li=2*math.pi*r #mean circumference of ring\n", "\n", "B=phi/A #flux density\n", "\n", "#for air gap\n", "\n", "Ha=B/(u0) #magnetic field for air gap\n", "\n", "#for iron ring\n", "\n", "Hi=B/(u0*ur) #magnetic field for iron ring\n", "\n", "#therefore, Amp turn in air gap\n", "\n", "Ata=Ha*la #Amp-turns required\n", "\n", "#therefore, Amp-turn in ring\n", "\n", "Ati=Hi*li #Amp-turns required\n", "\n", "#therrfore total mmf required\n", "\n", "mmf=Ata+Ati\n", "\n", "#Current required\n", "\n", "I=mmf/n #current required\n", "\n", "print\"Current required =\",round(I,4),\"Amp\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Current required = 5.8986 Amp\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.13,Page number 3-40" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "n1=10 #no of turns per cm\n", "i=2 #current\n", "B=1 #flux density\n", "\n", "u0=4*math.pi*10**-7 #permeability of free space\n", "\n", "n=n1*100 #no turns per m\n", "\n", "H=n*i\n", "\n", "print\"1) magnetic intensity =\",round(H,4),\"Amp-turn/meter\"\n", "\n", "#calculation for magnetization\n", "\n", "I=B/u0-H\n", "\n", "print\"2) magnetization =\",\"{0:.3e}\".format(I),\"Amp-turn/meter\"\n", "\n", "#relative permeability\n", "\n", "ur=B/(u0*H)\n", "\n", "print\"3) Relative Permeability of the ring =\",(int(ur))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1) magnetic intensity = 2000.0 Amp-turn/meter\n", "2) magnetization = 7.938e+05 Amp-turn/meter\n", "3) Relative Permeability of the ring = 397\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.14,Page number 3-40" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "m=40 #wt of the core\n", "d=7.5*10**3 #density of iron\n", "n=100 #frequency\n", "\n", "V=m/d #volume of the iron core\n", "\n", "E1=3800*10**-1 #loss of energy in core per cycles/cc\n", "\n", "E2=E1*V #loss of energy in core per cycles\n", "\n", "N=60*n #no of cycles per minute\n", "\n", "E=E2*N #loss of energy per minute\n", "\n", "print\"Loss of energy per minute =\",(E),\"Joule\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Loss of energy per minute = 12160.0 Joule\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.15,Page number 3-40" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "l=30*10**-2 #length of ring\n", "A=1*10**-4 #cross section area of ring\n", "i=0.032 #current\n", "\n", "phi=2*10**-6 #magnetic flux\n", "\n", "u0=4*math.pi*10**-7 #permeability of free space\n", "\n", "N=300 #no of turns in the coil\n", "\n", "#1) flux density\n", "\n", "B=phi/A #flux density\n", "\n", "print\"1) Flux density in the ring =\",(B),\"Wb/m**2\"\n", "\n", "#2) magnetic intensity of ring\n", "\n", "n=N/l #no of turns per unit length\n", "\n", "H=n*i #magnetic intensity\n", "\n", "print\"2) magnetic intensity =\",(H),\"Amp-turn/meter\"\n", "\n", "#3) permeability and relative permeability of the ring\n", "\n", "u=B/H\n", "\n", "print\"3) Permeability of the ring =\",\"{0:.3e}\".format(u),\"Wb/A-m\"\n", "\n", "ur=u/u0\n", "\n", "print\"4) Relative Permeability of the ring =\",round(ur,4)\n", "\n", "#4)Susceptibility\n", "\n", "Xm=ur-1\n", "\n", "print\"5) magnetic Susceptibility of the ring =\",round(Xm,4)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1) Flux density in the ring = 0.02 Wb/m**2\n", "2) magnetic intensity = 32.0 Amp-turn/meter\n", "3) Permeability of the ring = 6.250e-04 Wb/A-m\n", "4) Relative Permeability of the ring = 497.3592\n", "5) magnetic Susceptibility of the ring = 496.3592\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.16,Page number 3-41" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "E=3000 #loss of energy per cycle per cm**3\n", "m=12*10**3 #wt of the core\n", "d=7.5 #density of iron\n", "n=50 #frequency\n", "\n", "V=m/d #volume of the core\n", "\n", "El=E*V*n*60*60 #loss of energy per hour\n", "\n", "print\"Loss of energy per hour =\",(El),\"Erg\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Loss of energy per hour = 8.64e+11 Erg\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.17,Page number 3-41" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "n=50 #frequency\n", "V=10**-3 #volume of the specimen\n", "\n", "#Area of B-H loop\n", "\n", "A=0.5*10**3*1\n", "\n", "P=n*V*A\n", "\n", "print\"Hysteresis power loss =\",(P),\"Watt\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Hysteresis power loss = 25.0 Watt\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.18,Page number 3-42" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "phi=1.5*10**-4 #magnetic flux\n", "\n", "ur=900 #relative permeability of material\n", "\n", "n=600 #number of turns\n", "\n", "u0=4*math.pi*10**-7 #permeability of free space\n", "\n", "A=5.8*10**-4 #cross section area of ring\n", "\n", "d=40*10**-2 #mean diameter of ring\n", "\n", "li=math.pi*d #mean circumference of ring\n", "\n", "la=5*10**-3 #air gap\n", "\n", "B=phi/A #flux density\n", "\n", "#for air gap\n", "\n", "Ha=B/(u0) #magnetic field for air gap\n", "\n", "#for iron ring\n", "\n", "Hi=B/(u0*ur) #magnetic field for iron ring\n", "\n", "#therefore, Amp turn in air gap\n", "\n", "Ata=Ha*la #Amp-turns required\n", "\n", "#therefore, Amp-turn in ring\n", "\n", "Ati=Hi*li #Amp-turns required\n", "\n", "#therrfore total mmf required\n", "\n", "mmf=Ata+Ati\n", "\n", "#Current required\n", "\n", "I=mmf/n #current required\n", "\n", "print\"Current required =\",round(I,4),\"Amp\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Current required = 2.194 Amp\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.19,Page number 3-42" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "la=1*10**-2 #air gap\n", "r=0.5 #radius of ring\n", "A=5*10**-4 #cross section area of ring\n", "i=5 #current\n", "u=6*10**-3 #permeability of iron\n", "u0=4*math.pi*10**-7 #permeability of free space\n", "N=900 #no of turns in the coil\n", "\n", "#let reluctance of iron ring with air gap be S\n", "\n", "S=la/(u0*A)+(2*math.pi*r-la)/(u*A)\n", "\n", "print\"1) Reluctance =\",\"{0:.3e}\".format(S),\"A-T/Wb\"\n", "\n", "mmf=N*i\n", "\n", "print\"2) m.m.f =\",(mmf),\"Amp-turn\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1) Reluctance = 1.696e+07 A-T/Wb\n", "2) m.m.f = 4500 Amp-turn\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.20,Page number 3-43" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "#the magnetization force is given by,\n", "#H=NI/l\n", "\n", "H=5*10**3 #coercivity of bar magnet\n", "l=10*10**-2 #length of solenoid\n", "N=50 #number of turns\n", "\n", "I=l*H/N\n", "\n", "print\"current =\",(I),\"Ampere\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "current = 10.0 Ampere\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.21,Page number 3-43" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "ur=380 #relative permeability of air\n", "u0=4*math.pi*10**-7 #permeability of free space\n", "A=5*10**-4 #cross section area of ring\n", "n=200 #number of turns\n", "d=20*10**-2 #mean diameter of ring\n", "\n", "l=math.pi*d #mean circumference of ring\n", "\n", "phi=2*10**-3 #magnetic flux\n", "\n", "S=l/(u0*ur*A) #reluctance\n", "\n", "#using ohm's law for magnetic circuit\n", "\n", "#phi=N*I/S\n", "\n", "I=S*phi/n\n", "\n", "print\"1) Reluctance =\",\"{0:.3e}\".format(S),\"A-T/Wb\"\n", "print\"2) current =\",round(I,4),\"Ampere\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1) Reluctance = 2.632e+06 A-T/Wb\n", "2) current = 26.3158 Ampere\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.22,Page number 3-43" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "ur=1 #relative permeability of air\n", "u0=4*math.pi*10**-7 #permeability of free space\n", "A=6*10**-4 #cross section area of torroid\n", "n=500 #number of turns\n", "r=15*10**-2 #radius of torroid\n", "I=4 #current in coil\n", "l=2*math.pi*r #mean circumference of torroid\n", "MMF=n*I\n", "\n", "print\"1) MMF (NI) =\",(MMF),\"AT\"\n", "\n", "R=l/(u0*ur*A) #Reluctance\n", "\n", "print\"2) Reluctance (R) =\",\"{0:.3e}\".format(R),\"AT/Wb\"\n", "\n", "phi=MMF/R #flux\n", "\n", "print\"3) Magnetic flux =\",(phi),\"Wb\"\n", "\n", "B=phi/A #flux density\n", "\n", "print\"4) Flux density =\",\"{0:.3e}\".format(B),\"Wb/m**2\"\n", "\n", "H=B/(u0*ur) #magnetic field intensity\n", "\n", "print\"5) Magnetic field intensity =\",round(H,4),\"A/m\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1) MMF (NI) = 2000 AT\n", "2) Reluctance (R) = 1.250e+09 AT/Wb\n", "3) Magnetic flux = 1.6e-06 Wb\n", "4) Flux density = 2.667e-03 Wb/m**2\n", "5) Magnetic field intensity = 2122.0659 A/m\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.23,Page number 3-44" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "phi=10**-3 #magnetic flux\n", "ur=1000 #relative permeability of iron\n", "u0=4*math.pi*10**-7 #permeability of free space\n", "A=5*10**-4 #cross section area of ring\n", "la=2*10**-3 #air gap\n", "d=20*10**-3 #mean diameter of ring\n", "\n", "li=math.pi*d-la #mean circumference of ring\n", "\n", "#using KVL for magnetic circuit\n", "\n", "#AT(total)=AT(iron)+AT(air gap)\n", "\n", "ATt=(phi/(u0*A))*((li/ur)+la)\n", "\n", "print\"Number of Ampere-Turns required =\",round(ATt,0)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of Ampere-Turns required = 3280.0\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.17.24,Page number 3-44" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given data\n", "\n", "X=0.5*10**-5 #susceptibility of material\n", "\n", "H=10**6 #magnetic field strength\n", "\n", "I=X*H #intensity of magnetization\n", "\n", "u0=4*math.pi*10**-7 #permeability of free space\n", "\n", "B=u0*(H+I) #flux density\n", "\n", "print\"1) intensity magnetization =\",(I),\"Amp/m\"\n", "\n", "print\"2) flux density in the material =\",round(B,4),\"wb/m**2\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1) intensity magnetization = 5.0 Amp/m\n", "2) flux density in the material = 1.2566 wb/m**2\n" ] } ], "prompt_number": 26 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }