{ "metadata": { "celltoolbar": "Raw Cell Format", "name": "", "signature": "sha256:e413b3bea25c7729b7ae1f595bf0f843336be8c682782f6b92de1c93aa46ed9d" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 4: Laser" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.1,Page number 4-27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given Data:\n", "lamda=694.3*10**-9 #Wavelength in meter\n", "T=300 #Temperature in Kelvin\n", "\n", "h=6.63*10**-34 #Planck's Constant\n", "c=3*10**8 #Velocity of light\n", "K=1.38*10**-21 #Boltzmann Constant\n", "\n", "#Calculations:\n", "delE= h*c/lamda #Energy difference between two energy states N and N0\n", "\n", "#N=N0*e^-delE/(K*T)\n", "R=math.e**(-delE/(K*T)) #R=Ratio of N and N0 i.e.(R=N/N0)\n", "\n", "#(Printing mistake in textbook)\n", "#instead of e^-.692, it has taken e^-69.2\n", "\n", "print\"The ratio of population of two energy states is = \",R\n", "print\" (calculation mistake in book)\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The ratio of population of two energy states is = 0.500588928485\n", " (calculation mistake in book)\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.2,Page number 4-28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Given Data:\n", "lamda=6328*10**-10 #Wavelength in meter\n", "P=4.5*10**-3 #Power in watts\n", "h=6.63*10**-34 #Planck's Constant\n", "c=3*10**8 #Velocity of light\n", "\n", "#Calculations:\n", "delE= h*c/lamda #Energy difference\n", "#N*delE=P\n", "N=P/delE #number of photons emitted per second\n", "\n", "print\"Number of photons emitted per second is =\",N\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of photons emitted per second is = 1.43167420814e+16\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.3,Page number 4-29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given Data:\n", "lamda=780*10**-9 #Wavelength of photon in meter\n", "P=20*10**-3 #Power of each pulse in watts\n", "t=10*10**-9 #Duration of each pulse\n", "h=6.63*10**-34 #Planck's Constant\n", "c=3*10**8 #Velocity of light\n", "\n", "#Calculations:\n", "delE= h*c/lamda #Energy of each photon\n", "E=P*t #Energy of each pulse\n", "\n", "N=E/delE #Number of photons in each pulse\n", "print\"Number of photons in each pulse is =\",N\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of photons in each pulse is = 784313725.49\n" ] } ], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }