{ "metadata": { "name": "", "signature": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "chapter 10 : Sky wave propagation - The ionospheric waves" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 10.1 : page 10-19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "#given data :\n", "H=500 #in km\n", "n=0.8 #in m\n", "f_muf=10 #in MHz\n", "f_muf=f_muf*10**6 #in Hz\n", "f=10 #in MHz\n", "f=f*10**6 #in Hz\n", "# Formula : n=sqrt(1-81*N/f**2)\n", "Nmax=(1-n**2)*f**2/81 #in Hz \n", "fc=9*sqrt(Nmax) #in Hz\n", "Dskip=2*H*sqrt((f_muf/fc)**2-1) #in Km\n", "print \"Assuming the earth is flat the range = %0.2f km\" %Dskip\n", "#Note : Answer in the book is wrong." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Assuming the earth is flat the range = 1333.33 km\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 10.2 : page 10-19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data :\n", "n=0.8 #in m\n", "H=500 #in km\n", "a=6370 #in km\n", "D=1349.07 #in Km\n", "f_muf=10 #in MHz\n", "f_muf=f_muf*10**6 #in Hz\n", "f=10 #in MHz\n", "f=f*10**6 #in Hz\n", "# Formula : n=sqrt(1-81*N/f**2)\n", "Nmax=(1-n**2)*f**2/81 #in Hz \n", "fc=9*sqrt(Nmax) #in Hz\n", "# Formula : f_muf/fc=sqrt(D**2/(4*(H+D**2/(8*a))))+1\n", "D1=2*(H+D**2/(8*a))*sqrt((f_muf/fc)**2-1) #in Km\n", "Dskip=2*H*sqrt((f_muf/fc)**2-1) #in Km\n", "print \"Assuming the earth is curved the ground range = %0.2f km\"% D1\n", "# Answer wrong in the textbook." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Assuming the earth is curved the ground range = 1428.57 km\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 10.3 : page 10-20" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "#given data :\n", "Nmax=2.48*10**6 #in cm**-3\n", "Nmax=2.48*10**6*10**-6 #in m**-3\n", "fc=9*sqrt(Nmax) #in MHz\n", "print \"Critical frequency = %0.2f MHz \" %fc " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Critical frequency = 14.17 MHz \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 10.4 : page 10-20" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "#given data :\n", "H=200 #in Km\n", "D=4000 #in Km\n", "fc=5 #in MHz\n", "f_muf=fc*sqrt(1+(D/(2*H))**2) #in MHz\n", "print \"MUF for the given path = %0.2f MHz \" %f_muf\n", "#Note : Answer in the book is wrong." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "MUF for the given path = 50.25 MHz \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 10.5 : page 10-20" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "#given data :\n", "#For F1 layer :\n", "print \"For F1 layer :\" \n", "Nmax=2.3*10**6 #in cm**3\n", "Nmax=2.3*10**6*10**-6 #in m**3\n", "fc=9*sqrt(Nmax) #in MHz\n", "print \"Critical frequency = %0.2f MHz \" %fc \n", "\n", "#For F2 layer :\n", "print \"For F2 layer :\" \n", "Nmax=3.5*10**6 #in cm**3\n", "Nmax=3.5*10**6*10**-6 #in m**3\n", "fc=9*sqrt(Nmax) #in MHz\n", "print \"Critical frequency = %0.2f MHz\" %fc\n", "\n", "#For F3 layer :\n", "print \"For F3 layer :\" \n", "Nmax=1.7*10**6 #in cm**3\n", "Nmax=1.7*10**6*10**-6 #in m**3\n", "fc=9*sqrt(Nmax) #in MHz\n", "print \"Critical frequency = %0.2f MHz \" %fc " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "For F1 layer :\n", "Critical frequency = 13.65 MHz \n", "For F2 layer :\n", "Critical frequency = 16.84 MHz\n", "For F3 layer :\n", "Critical frequency = 11.73 MHz \n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 10.6 : page 10-21" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "#given data :\n", "n=0.7 #refractive index\n", "N=400 #in cm**-3\n", "#Formula : n=sqrt(1-81*N/f**2)\n", "f=sqrt(81*N/(1-n**2)) #in KHz\n", "print \"Frequency of wave propagation = %0.2f kHz\" %f\n", "#Note : Unit of Answer in the book is MHz. It is written by mistake. It is accurately calculated by scilab in KHz. " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of wave propagation = 252.05 kHz\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 10.7 : page 10-21" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "#given data :\n", "HT=169.0 #in meter\n", "HR=20.0 #in meter\n", "d=4.12*(sqrt(HT)+sqrt(HR)) #in Km\n", "print \"Maximum distance = %0.2f km \" %d \n", "r_dash=(4/3)*6370/1000 #in Km\n", "RadioHorizon=sqrt(2*r_dash*HT) #in Km\n", "print \"Radio Horizon = %0.2f km \" %RadioHorizon\n", "# Answe wrong in thetextbook." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum distance = 71.99 km \n", "Radio Horizon = 45.03 km \n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 10.8 : page 10-21" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import tan , pi, asin, cos\n", "H=200 #in Km\n", "Beta=20 #in Degree\n", "a=6370 #in Km\n", "D_flat=2*H/tan(Beta*pi/180) #in Km\n", "print \"If earth assumed to be flat transmission path distance = %0.2f km\" %D_flat\n", "D_curved=2*a*(90*pi/180-Beta*pi/180)-asin(a*cos(Beta*pi/180)/(a+H))\n", "print \"If earth assumed to be curved transmission path distance = %0.2f \"%D_curved\n", "# Answe wrong in thetextbook." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "If earth assumed to be flat transmission path distance = 1098.99 km\n", "If earth assumed to be curved transmission path distance = 15563.70 \n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 10.9 : page 10-22" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import acos\n", "#given data :\n", "R=6370 #in Km\n", "hm=400 #in Km\n", "#Formula : d=2*R*Q=2*R*acos(R/(R+hm))\n", "d=2*R*acos(R/(R+hm)) #in Km\n", "print \"Maximum Range in a single range transmission = %0.2f km \" %d \n", "# Answe wrong in thetextbook." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum Range in a single range transmission = 20011.95 km \n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 10.10 : page 10-22" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "#given data :\n", "n=0.6 #refractive index\n", "N=4.23*10**4 #in m**-3\n", "#Formula : n=sqrt(1-81*N/f**2)\n", "f=sqrt(81*N/(1-n**2)) #in Hz\n", "print \"Frequency of wave propagation = %0.3f kHz\" %(f/1000)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of wave propagation = 2.314 kHz\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 10.11 : page 10-23" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "#given data :\n", "n=0.8 #refractive index\n", "N=500 #in cm**-3\n", "#Formula : n=sqrt(1-81*N/f**2)\n", "f=sqrt(81*N/(1-n**2)) #in KHz\n", "print \"Frequency of wave propagation = %0.2f kHz\" %f " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of wave propagation = 335.41 kHz\n" ] } ], "prompt_number": 24 } ], "metadata": {} } ] }