{ "metadata": { "name": "", "signature": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "chapter 01 : Antenna Principles" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.1 : page 1.42" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "#given data :\n", "E=4.0 #in V/m\n", "Eta=120*pi #constant\n", "#Formula : E/H=Eta\n", "H=E/Eta #in A/m\n", "print \"Strength of magnetic field in free space = %0.4f A/m \" %H" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Strength of magnetic field in free space = 0.0106 A/m \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.2 : page 1.42" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "#given data :\n", "H=5.2 #in mA/m\n", "Eta=120*pi #constant\n", "#Formula : E/H=Eta\n", "E=H*10**-3*Eta #in V/m\n", "print \"Strength of Electric field in free space =\",round(E),\"V/m\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Strength of Electric field in free space = 2.0 V/m\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.3 : page 1.42" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data :\n", "I=20.0 #in A\n", "Rr=100.0 #in Ohm\n", "#Formula : Wr=I**2*R\n", "Wr=I**2*Rr #in W\n", "print \"Radiated power = %0.f kW \" %(Wr/1000) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radiated power = 40 kW \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.4 : page 1.42" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "#given data :\n", "W=625.0 #in KW\n", "r=30.0 #in Km\n", "Erms=sqrt(90*W*1000)/(r*1000) #in V/m\n", "print \"Strength of Electric field at 30Km away = %0.f mV/m \" %(Erms*1000) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Strength of Electric field at 30Km away = 250 mV/m \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.5 : page 1.43" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "#given data :\n", "le=10.0 #in m\n", "Irms=450.0 #in A\n", "f=50.0 #in KHz\n", "R=1.5 #in Ohm\n", "lamda=300.0/(f/1000) #in m\n", "Rr=160*(pi)**2*(le/lamda)**2 #in Ohm\n", "print \"Radiation resistance = %0.5f ohm\" %Rr\n", "Wr=Irms**2*Rr #in W\n", "print \"Radiated power = %0.2f Watts \" %Wr \n", "Eta=(Rr/(Rr+R))*100 #efficiency in %\n", "print \"Efficiency of antenna = %0.2f %%\" %Eta\n", "# Ans in the textbook is not accurate." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radiation resistance = 0.00439 ohm\n", "Radiated power = 888.26 Watts \n", "Efficiency of antenna = 0.29 %\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.6 : page 1.43" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "#given data :\n", "le=50.0 #in m\n", "f=100.0 #in MHz\n", "lamda=300.0/(f) #in m\n", "Rr=(160*(pi)**2)*(le/lamda)**2 #in Ohm\n", "print \"Radiation Resistance = %0.2f Mohm \" %(Rr/10**6) \n", "#Note : Answer in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radiation Resistance = 0.44 Mohm \n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.7 : page 1.44" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "#given data :\n", "l=30 #in m\n", "Irms=20 #in A\n", "f=1 #in MHz\n", "r=10 #in Km\n", "r=r*1000 #in m\n", "le=2*l/pi #in m\n", "lamda=300/(f) #in m\n", "Erms=120*pi*le*Irms/(lamda*r) #in V/m\n", "print \"Field strength at 10Km distance = %0.2e V/m \" %Erms \n", "#Note : Answer in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Field strength at 10Km distance = 4.80e-02 V/m \n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.8 : page 1.44" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "#given data :\n", "Rl=1.0 #in ohm\n", "#Formula : Rr=80*pi**2*(l/lamda)**2\n", "#Given l=lamda/10\n", "#l/lamda=1/10\n", "Rr=80*pi**2*(1.0/10)**2 #in Ohm\n", "print \"Radiation resistance = %0.2f Ohm \" %(Rr) \n", "Eta=Rr/(Rr+Rl) #Unitless\n", "print \"Antenna Efficiency = %0.2f %% \" %(Eta*100) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radiation resistance = 7.90 Ohm \n", "Antenna Efficiency = 88.76 % \n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.9 : page 1.44" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "#given data :\n", "r=100 #in Km\n", "W=100 #in KW\n", "Erms=sqrt(90*W*1000)/(r*1000) #in V/m\n", "print \"Strength of Electric Field = %0.2f V/m \" %Erms " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Strength of Electric Field = 0.03 V/m \n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.10 : page 1.44" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "#given data :\n", "le=200.0 #in m\n", "Irms=200 #in A\n", "f=300 #in KHz\n", "r=10 #in Km\n", "c=3*10**8 #speed of light i m/s\n", "lamda=c/(f*1000) #in m\n", "Erms=120*pi*le*Irms/(lamda*r*10**3) #in V/m\n", "print \"Field strength at 10Km distance = %0.4f V/m\" %(Erms) \n", "Rr=(160*(pi)**2)*(le/lamda)**2 #in Ohm\n", "W=Irms**2*Rr #in Watts\n", "print \"Radiated Power = %0.2f MW \" %(W/10**6) \n", "#Note : Answer is wrong in the book. Unit of answer in the book is written mW instead of MW by mistake." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Field strength at 10Km distance = 1.5080 V/m\n", "Radiated Power = 2.53 MW \n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.11 : page 1.45" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "#given data :\n", "#Formula : Rr=80*pi**2*(l/lamda)**2\n", "#Given l=lamda/60\n", "#l/lamda=1/60\n", "Rr=80*pi**2*(1.0/60)**2 #in Ohm\n", "print \"Radiation resistance = %0.3f Ohm \" %Rr " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radiation resistance = 0.219 Ohm \n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.12 : page 1.45" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data :\n", "r=10.0 #in Km\n", "Erms=10.0 #in mV/m\n", "r1=20.0 #in Km\n", "#Formula : Erms=sqrt(90*W)/r #in V/m\n", "#Let swrt(90*W)=a\n", "a=Erms*r \n", "Erms1=a/r1 #in mV/m\n", "print \"Field strength at 20Km distance = %0.f mV/m \" %Erms1 " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Field strength at 20Km distance = 5 mV/m \n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.13 : page 1.45" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "#given data :\n", "r=1.0 #in Km\n", "r=1*10**3 #in m\n", "l=1.0 #in m\n", "Irms=10.0 #in A\n", "f=5.0 #in MHz\n", "c=3*10**8 #speed of light i m/s\n", "lamda=c/(f*10**6) #in m\n", "le=2*l/pi #in m\n", "Erms=120*pi*le*Irms/(lamda*r) #in V/m\n", "print \"Field strength at 10Km distance = %0.4f V/m \" %Erms\n", "#Note : Answer in the book is wrong. Mistake during value putting." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Field strength at 10Km distance = 0.0400 V/m \n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.14 : page 1.46" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "#given data :\n", "Irms=30.0 #in A\n", "f=1.0 #in MHz\n", "Erms=10.0 #in mV/m\n", "Erms=Erms*10**-3 #in V/m\n", "r=50.0 #in Km\n", "r=r*10**3 #in m\n", "c=3*10**8 #speed of light i m/s\n", "lamda=c/(f*10**6) #in m\n", "le=Erms*lamda*r/(120*pi*Irms) #in m\n", "print \"Effetive height of Antenna = %0.4f meter \" %le " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Effetive height of Antenna = 13.2629 meter \n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.15 : page 1.46" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from sympy import symbols, solve\n", "I, r = symbols('I r')\n", "E = 10*I/r # V/m\n", "\n", "#given data :\n", "Erms_sqr = E**2\n", "Wt = (Erms_sqr*r**2)/30 \n", "Rr = Wt/I**2 # ohm\n", "print \"Radiation resistance = %0.2f Ohm \" %float(Rr) \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radiation resistance = 3.33 Ohm \n" ] } ], "prompt_number": 41 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.16 : page 1.46" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data :\n", "lamda=300/(50*10**-6) #in m\n", "r=round(lamda)/(2*pi) #in m\n", "print \"Distance = %0.2e meter \" %r \n", "#Note : Answer in the book is wrong." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Distance = 9.55e+05 meter \n" ] } ], "prompt_number": 43 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.17 : page 1.47" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "#given data :\n", "r=2 #in Km\n", "r=r*10**3 #in m\n", "Wt=1 #in KW\n", "Wt=Wt*10**3 #in Watt\n", "Erms=sqrt(30*Wt)/r #in V/m\n", "print \"Field strength at 2Km distance = %0.3f mV/m \" %(Erms*10**3) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Field strength at 2Km distance = 86.603 mV/m \n" ] } ], "prompt_number": 45 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.18 : page 1.47" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "#given data :\n", "f=20.0 #in MHz\n", "f=f*10**6 #in Hz\n", "le=100.0 #in m\n", "c=3*10**8 #speed of light in m/s\n", "lamda=c/f #in m\n", "Rr=160*(pi*le/lamda)**2 #in ohm\n", "print \"Radiation Resistance = %0.1f kohm \" %(Rr/1000) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radiation Resistance = 70.2 kohm \n" ] } ], "prompt_number": 47 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.19 : page 1.47" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt, pi\n", "#given data :\n", "P=10.0 #in W/m**2\n", "f=40.0 #in MHz\n", "f=f*10**6 #in Hz\n", "mu_r=4.0 #constant\n", "epsilon_r=5 #constant\n", "#Velocity of propagation\n", "#formula : v=(1/sqrt(mu_o*epsilon_o))*(1/sqrt(mu_r*epsilon_r)) #in m/s\n", "#1/sqrt(mu_o*epsilon_o)=c=speed of light=3*10**8 m/s\n", "c=3*10**8 #speed of light in m/s\n", "v=c*(1.0/sqrt(mu_r*epsilon_r)) #in m/s\n", "print \"Velocity of propagation = %0.1e m/s \" %v \n", "#Wavelength\n", "lamda=v/f #in meter\n", "print \"Wavelength = %0.2f m \" %lamda \n", "#rms electric field\n", "#Formula : E=P*sqrt(mu_o/epsilon_o)*sqrt(mu_r/epsilon_r) #in V/m\n", "E=sqrt(1200*pi*sqrt(4.0/5)) #in V/m\n", "Erms=sqrt(E**2/sqrt(2)) #in V/m\n", "print \"rms Electric Field = %0.2f V/m\" %Erms \n", "#Impedence of medium\n", "Eta=(sqrt(2)*Erms)**2/P #in Ohm\n", "print \"Impedence of medium = %0.2f ohm \" %Eta " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity of propagation = 6.7e+07 m/s \n", "Wavelength = 1.68 m \n", "rms Electric Field = 48.83 V/m\n", "Impedence of medium = 476.86 ohm \n" ] } ], "prompt_number": 50 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.20 : page 1.48" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "from sympy import symbols, solve, N\n", "#given data :\n", "#Hfi = (Im*dlsin(theta)/(4*pi))*[cos(omega*t1)/r-omega*sin(omega*t1)/(c*r)]\n", "lamda, r = symbols('lamda r')\n", "#expr = 200.0/r**2-2*pi*f/c\n", "expr = 200.0/r**2-2*pi/lamda/r # putting f/c = lamda\n", "r = solve(expr, r)\n", "print \"r =\",N(r[0],4)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "r = 31.83*lamda\n" ] } ], "prompt_number": 3 } ], "metadata": {} } ] }