{ "metadata": { "name": "", "signature": "sha256:7ee429170e048ea291cb04ea69be8064a04800ea636a7a3699d6be07a58fc7ae" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter4, Linear Wire Antennas" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 4.2.1, page 4-17" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi, acos, degrees, cos, sin, atan\n", "import numpy as np\n", "l=5 #cm(length of antenna)\n", "f=100 #MHz(operating frequency)\n", "Io=120 #mA(Terminal current)\n", "t=1 #s(time)\n", "theta=45 #degree(Angle)\n", "r=3 #m(radius)\n", "c=3*10**8 #m/s##Speed of light\n", "omega=2*pi*f*10**6 #rad/sec(rotation)\n", "k=omega/c #rad/m(Phase constant)\n", "kr=2*pi*r/3 #degree(Phase constant)\n", "Er=Io*10**-3*l*10**-2/(2*pi*r**2)*cos(theta*pi/180)*120*pi*(1+1/(1J*kr))*np.exp(-1J*kr+1J*omega*t) #V/m(Electric field)\n", "Er=Er*1000 #mV/m(Electric field)\n", "Er_mag=abs(Er) #mV/m(magnitude of Er)\n", "Er_angle=degrees(atan(Er.imag/Er.real)) #degree(angle of Er)\n", "print \"Value of Er : magnitude = %0.2f mV/m & angle = %0.2f degree \" %(Er_mag,Er_angle) \n", "Etheta=Io*10**-3*l*10**-2/(4*pi*r)*sin(theta*pi/180)*120*pi*1J*k*(1+1/(1J*kr)+1/(1J*kr)**2)*np.exp(-1J*kr+1J*omega*t) #V/m(Electric field)\n", "Etheta_mag=abs(Etheta) #V/m(magnitude of Etheta)\n", "Etheta_angle=degrees(atan(Etheta.imag/Etheta.real)) #degree(angle of Etheta)\n", "print \"Value of Etheta : magnitude = %0.2e V/m & angle = %0.2f degree \" %(Etheta_mag,Etheta_angle) \n", "Hfi=Io*10**-3*l*10**-2/(4*pi*r)*sin(theta*pi/180)*1J*k*(1+1/(1J*kr))*np.exp(-1J*kr+1J*omega*t) #A/m(Magnetic field)\n", "Hfi_mag=abs(Hfi) #A/m(magnitude of Hfi)\n", "Hfi_angle=degrees(atan(Hfi.imag/Hfi.real)) #degree(angle of Hfi)\n", "print \"Value of H\u03a6 : magnitude = %0.3e A/m & angle = %0.f degree \" %(Hfi_mag,Hfi_angle) \n", "#Answer is not accurate in the book." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of Er : magnitude = 28.64 mV/m & angle = -9.04 degree \n", "Value of Etheta : magnitude = 8.78e-02 V/m & angle = 80.73 degree \n", "Value of H\u03a6 : magnitude = 2.387e-04 A/m & angle = 81 degree \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 4.5.1, page 4-35" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "f=500.0 #MHz(Operating Frequency)\n", "Do=1.643 #for half wave dipole\n", "c=3*10**8 #m/s##Speed of light\n", "lamda=c/(f*10**6) #m(Wavelength)\n", "Aem=lamda**2/(4*pi)*Do #m\u00b2(Effective area)\n", "print \"Effective area = %0.3f m\u00b2 \" %Aem " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Effective area = 0.047 m\u00b2 \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 4.6.1, page 4-37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt, pi\n", "l=1 #m\n", "Prad=4 #W\n", "f=1.5 #MHz\n", "c=3*10**8 #m/s##Speed of light\n", "lamda=c/(f*10**6) #m\n", "#here l/lamda<1/50 tells us it is a Hertzian monopole antenna\n", "h=1 #m\n", "Rr=40*pi**2*(h/lamda)**2 #m\u03a9\n", "Io=sqrt(2*Prad/Rr) #A\n", "print \"Current required = %0.2f A \" %Io " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Current required = 28.47 A \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 4.9.1, page 4-51" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "le=100.0 #m\n", "Irms=450.0 #A\n", "f=40000.0 #Hz\n", "c=3*10**8 #m/s##Speed of light\n", "lamda=c/f #m\n", "P=160*pi**2*(le/lamda)**2*Irms**2 #mW\n", "Rr=160*pi**2*(le/lamda)**2 #\u03a9\n", "print \"Power radiated = %0.2f kW \" %(P*10**-3) \n", "print \"Radiation resistance = %0.3f \u03a9 \"%Rr\n", "#Answer wrong for radiation resistance in the book." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power radiated = 56.85 kW \n", "Radiation resistance = 0.281 \u03a9 \n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 4.9.2, page 4-51" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "\n", "le=61.4 #m\n", "Irms=50 #A\n", "lamda=625 #m\n", "P=160*pi**2*(le/lamda)**2*Irms**2 #kW\n", "Rr=160*pi**2*(le/lamda)**2 #\u03a9\n", "print \"Power radiated = %0.2f kW \" %(P*10**-3) \n", "print \"Radiation resistance = %0.2f \u03a9 \"%Rr " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power radiated = 38.10 kW \n", "Radiation resistance = 15.24 \u03a9 \n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 4.9.3, page 4-51" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "le=10.0 #m(effective length)\n", "Irms=450 #A(rms current)\n", "Rl=1.5 #\u03a9(resistance)\n", "f=50.0 #kHz(Operating frequency)\n", "c=3*10**8 #m/s##Speed of light\n", "lamda=c/(f*10**3) #m(Wavelength)\n", "P=160*pi**2*(le/lamda)**2*Irms**2 #kW(Power)\n", "P=P*1000 #W(Power)\n", "Rr=160*pi**2*(le/lamda)**2 #\u03a9(Radiation resistance)\n", "Eta=Rr/(Rr+Rl)*100 #%(Efficiency)\n", "print \"Efficiency of antenna = %0.2f %% \"%Eta " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Efficiency of antenna = 0.29 % \n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 4.9.4, page 4-52" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "#l=lamda/8\n", "lBYlamda=1.0/8 #(length/Wavelength)\n", "Rr=80*pi**2*(lBYlamda)**2 #\u03a9(Radiation resistance)\n", "print \"Radiation resistance = %0.4f \u03a9 \"%Rr " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radiation resistance = 12.3370 \u03a9 \n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 4.9.5, page 4-52" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from math import pi\n", "L=1 #m(Length of element)\n", "f=10 #MHz(Operating frequency)\n", "c=3*10**8 #m/s##Speed of light\n", "lamda=c/(f*10**6) #m(Wavelength)\n", "Rr=80*pi**2*(L/lamda)**2 #\u03a9(Radiation resistance)\n", "print \"Radiation resistance = %0.3f \u03a9 \"%Rr " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radiation resistance = 0.877 \u03a9 \n" ] } ], "prompt_number": 16 } ], "metadata": {} } ] }