{ "metadata": { "name": "", "signature": "sha256:0174690c77909c04b196794e86400339cc9b848d5d1c10d76a582a253b10cfc2" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter14, ground Wave Propagation" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 14.6.1, page : 14-11" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import log10\n", "d=36000 #km(height of satellite)\n", "f=4000 #MHz(frequency)\n", "GT=20 #dB(Transmitter gain)\n", "GR=40 #dB(Reciever gain)\n", "PT=200 #W(Transmitted power)\n", "PT=10*log10(PT) #dB(Transmitted power)\n", "print \"Part (i):\" \n", "Ls=32.44+20*log10(f)+20*log10(d) #dB(Free space transmission loss)\n", "print \"\\tFree space transmission loss = %0.2f dB \"%Ls \n", "print \"Part (ii):\" \n", "PT=200 #W(Transmitted power)\n", "PT_dB=10*log10(PT) #dB(Transmitted power)\n", "PR_dB=PT_dB+GT+GR-Ls #dB(Recieved power)\n", "PR=10**(PR_dB/10) #W(Recieved power)\n", "print \"\\tReceived power = %0.2f pW \"%(PR*10**12)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part (i):\n", "\tFree space transmission loss = 195.61 dB \n", "Part (ii):\n", "\tReceived power = 5.50 pW \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 14.6.2, page : 14-12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import log10, sqrt, pi\n", "\n", "f=150 #MHz(frequency)\n", "c=3*10**8 #m/s(speed of light)\n", "GT=1.64 #dB(Transmitter gain)\n", "PT=20 #W(Transmitted power)\n", "d=50 #km(distance)\n", "lamda=c/(f*10**6) #m(Wavelength)\n", "E=sqrt(30*GT*PT)/(d*1000) #V/m(emf induced)\n", "le=lamda/pi #m(Effective length)\n", "Voc=E*le #V/m(Open circuit voltage)\n", "print \"Open circuit voltage = %0.2f micro Volt \"%(Voc*10**6) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Open circuit voltage = 399.40 micro Volt \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 14.10.1, page : 14-24" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import log10, sqrt, pi\n", "\n", "ht=100 #m(transmitter height)\n", "hr=100 #m(receiver height)\n", "d=3.57*(sqrt(ht)+sqrt(hr)) #km(Range)\n", "print \"Range of space wave propagation = %0.2f km \"%d " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Range of space wave propagation = 71.40 km \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 14.10.2, page : 14-27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt, pi\n", "\n", "ht=100 #feet(transmitter height)\n", "hr=50 #feet(receiver height)\n", "d=1.4142*(sqrt(ht)+sqrt(hr)) #miles(Range)\n", "print \"Radio horizon = %0.2f miles \"%d " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radio horizon = 24.14 miles \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 14.10.3, page : 14-28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "ht=80 #m(transmitter height)\n", "hr=50 #m(receiver height)\n", "d=4.12*(sqrt(ht)+sqrt(hr)) #km(Range)\n", "print \"Maximum distance = %0.2f km \"%d " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum distance = 65.98 km \n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 14.10.4, page : 14-28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "ht=100 #m(transmitter height)\n", "d=80 #km(receiver height)\n", "hr=(d/4.12-sqrt(ht))**2 #m(range)\n", "print \"Required height of receiving antenna = %0.2f meter \"%hr " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Required height of receiving antenna = 88.69 meter \n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 14.10.5, page : 14-28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "ht=100 #m(transmitter height)\n", "d=4.12*sqrt(ht) #km(Horizon distance)\n", "print \"Horizon distance = %0.2f km \"%d " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Horizon distance = 41.20 km \n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No. 14.10.6, page : 14-36" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "P=35 #W(Transmitter power\n", "ht=45 #m(transmitter height)\n", "hr=25 #m(receiver height)\n", "f=90 #MHz(frequency)\n", "c=3*10**8 #m/s(Speed of light)\n", "d=4.12*(sqrt(ht)+sqrt(hr)) #km(line of sight distance)\n", "print \"Distance of line of sight communication = %0.2f km \"%d \n", "lamda=c/(f*10**6) #m(Wavelength)\n", "ER=88*sqrt(P)*ht*hr/(lamda*(d*1000)**2) #V/m(Field strength)\n", "print \"Field strength = %0.2f micro Volt/meter \"%(ER*10**6) \n", "#Answer is wrong in the textbook." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Distance of line of sight communication = 48.24 km \n", "Field strength = 83.90 micro Volt/meter \n" ] } ], "prompt_number": 11 } ], "metadata": {} } ] }