{ "metadata": { "name": "", "signature": "sha256:d35f66e241c83fce49bf0f825461c9bef7321fa8529d41a1200b86c1371dbb65" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 11 - Information theory" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1 - pg 488" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the information content in all symbols\n", "import math\n", "from math import log\n", "#given\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "Px_1=1./2;#probability 1\n", "Px_2=1./4;#probability 2\n", "Px_3=1./8;#probability 3\n", "Px_4=1./8;#probability 4\n", "\n", "#calculations\n", "Ix_1 = log2(1/(Px_1))#information content in first probability\n", "Ix_2 = log2(1/(Px_2))#information content in first probability\n", "Ix_3 = log2(1/(Px_3))#information content in first probability\n", "Ix_4 = log2(1/(Px_3))#information content in first probability\n", "\n", "#results\n", "print \"i. Information content of first symbol (bits) = \",Ix_1\n", "print \"ii. Information content of second symbol (bits) = \",Ix_2\n", "print \"iii. Information content of third symbol (bits) = \",Ix_3\n", "print \"iV. Information content of fourth symbol (bits)\",Ix_4\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i. Information content of first symbol (bits) = 1.0\n", "ii. Information content of second symbol (bits) = 2.0\n", "iii. Information content of third symbol (bits) = 3.0\n", "iV. Information content of fourth symbol (bits) 3.0\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2 - pg 488" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the amount of information\n", "import math\n", "from math import log\n", "#given\n", "Px_i = 1./4#probability of a symbol\n", "\n", "#calculation\n", "Ix_i = (log(1/Px_i))/log(2)#formula for amount of information of a symbol\n", "\n", "#result\n", "print \"i. Amount of information (bits) = \",Ix_i\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i. Amount of information (bits) = 2.0\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3 - pg 489" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the amount of information\n", "#given\n", "import math\n", "from math import log\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "#since there are only two binary levels i.e. 1 or 0. Since, these two binary levels occur with equal likelihood of occurrence will be\n", "Px_1 = 1./2#probability of zero level\n", "Px_2 = 1./2#probability of first level\n", "\n", "#calculations\n", "Ix_1 = log2(1/Px_1)#amount of information of zero level with base 2\n", "Ix_2 = log2(1/Px_2)#amount of information of first level with base 2\n", "Ix_1= log(1/Px_1)/log(2)#amount of information content with base 10\n", "Ix_2 = Ix_1 \n", "\n", "#result\n", "print \"i.Amount of information content wrt binary PCM 0 (bit) = \",Ix_1\n", "print \"ii.Amount of information content wrt binary PCM 1 (bit) = \",Ix_2\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i.Amount of information content wrt binary PCM 0 (bit) = 1.0\n", "ii.Amount of information content wrt binary PCM 1 (bit) = 1.0\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4 - pg 489" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the amount of information\n", "import math\n", "from math import log\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "#given\n", "Px_1 = 1./4#probability wrt to binary PCM '0'\n", "Px_2 = 3./4#probability wrt to binary PCM '1'\n", "\n", "#calculations\n", "Ix_1 = log2(1/Px_1)#amount of information of zero level with base 2\n", "Ix_2 = log2(1/Px_2)#amount of information of first level with base 2\n", "Ix_1= log(1/Px_1)/log(2)#amount of information content with base 10\n", "Ix_2= log(1/Px_2)/log(2)#amount of information content with base 10\n", "\n", "#results\n", "print \"i.Amount of information carried wrt to binary PCM 0 (bits) = \",Ix_1\n", "print \"ii.Amount of information carried wrt to binary PCM 1 (bits) = \",round(Ix_2,3)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i.Amount of information carried wrt to binary PCM 0 (bits) = 2.0\n", "ii.Amount of information carried wrt to binary PCM 1 (bits) = 0.415\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9 - pg 492" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the entropy and Amount of information\n", "import math\n", "from math import log\n", "#given\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "\n", "Px_1 = .4#probability of first symbol\n", "Px_2 = .3#probability of second symbol\n", "Px_3 = .2#probability of third symbol\n", "Px_4 = .1#probability of fourth symbol\n", "\n", "#calculations\n", "H_X = -Px_1*log2(Px_1)-Px_2*log2(Px_2)-Px_3*log2(Px_3)-Px_4*log2(Px_4);#entropy\n", "Px1x2x1x3 = Px_1*Px_2*Px_1*Px_3;#product of probabilities\n", "Ix1x2x1x3 =-log2(Px1x2x1x3);#information of four symbols\n", "Px4x3x3x2 = Px_4*Px_3*Px_3*Px_2;#product of probabilities\n", "Ix4x3x3x2 = -log2(Px4x3x3x2);#information of four symbols\n", "\n", "#results\n", "print \"i.Entropy (bits/symbol) = \",round(H_X,2)\n", "print \"ii.Amount of information contained in x1x2x1x3 (bits/symbol) = \",round(Ix1x2x1x3,2)\n", "print \"Thus,Ix1x2x1x3 < 7.4[=4*H_X]bits/symbol\"\n", "print \"iii.Amount of information contained in x4x3x3x2 (bits/symbol) = \",round(Ix4x3x3x2,2)\n", "print \"\\nThus we conclude that\\nIx4x3x3x2 > 7.4[=4*H_X]bits/symbol\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i.Entropy (bits/symbol) = 1.85\n", "ii.Amount of information contained in x1x2x1x3 (bits/symbol) = 6.7\n", "Thus,Ix1x2x1x3 < 7.4[=4*H_X]bits/symbol\n", "iii.Amount of information contained in x4x3x3x2 (bits/symbol) = 9.7\n", "\n", "Thus we conclude that\n", "Ix4x3x3x2 > 7.4[=4*H_X]bits/symbol\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12 - pg 495" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the average rate of information convyed\n", "import math\n", "from math import log\n", "#given\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "\n", "n = 2.*10**6#elements od black and white TV picture\n", "m = 16.#brightness levels of black and white TV picture\n", "o = 32.#repeated rate of pictures per second \n", "\n", "#calculations\n", "Px_i = 1./m#probability of brightness levels of picture\n", "H_X = 0;\n", "for i in range (0,15):\n", "\tH_Xi = (-1./(1./Px_i))*log2(1./(1./Px_i));\n", "\tH_X = H_X +H_Xi\n", "\n", "r = n*o#rate of symbols generated \n", "R = r*math.ceil(H_X)#average rate of information convyed \n", " \n", "#results\n", "print \"i. Average rate of information convyed (Mbits/seconds) = \",R/10**6\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i. Average rate of information convyed (Mbits/seconds) = 256.0\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13 - pg 495" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the average information rate\n", "import math\n", "from math import log\n", "#given\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "\n", "t_dot = .2#duration of dot symbol\n", "t_dash = .6#duration of dash symbol\n", "t_space = .2#time between the symbols\n", "#wkt sum of the probability is 1 i.e P_dot + P_dash = 1 hence\n", "#P_dot = 2*P_dash weget \n", "P_dot = 2./3#probality of dot symbol\n", "P_dash = 1./3#probality of dash symbol\n", "\n", "#calculations \n", "H_X = -P_dot*log2(P_dot)-P_dash*log2(P_dash);#entropy\n", "T_s = P_dot*t_dot + P_dash*t_dash +t_space;#average time per symbol\n", "r = 1/T_s;#average symbol rate \n", "R = r*H_X;#average information rate of the telegraph sourece\n", "\n", "#result\n", "print \"i.The average information rate of the telegraph source (bits/seconds) = \",round(R,3)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i.The average information rate of the telegraph source (bits/seconds) = 1.722\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14 - pg 496" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the entropy and information rate\n", "import math\n", "from math import log\n", "#given\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "#given symbols are equally likely all the symbols the probabilities are same\n", "Px_1 = 1./8;#probability of first symbol\n", "Px_2 = 1./8;#probability of second symbol\n", "Px_3 = 3./8;#probability of third symbol\n", "Px_4 = 3./8;#probability of fourth symbol\n", "\n", "r = 2#average symbol rate from problem 11.14\n", "\n", "#calculaitons\n", "H_X = Px_1*log2(1/Px_1) + Px_2*log2(1/Px_2) + Px_3*log2(1/Px_3) + Px_4*log2(1/Px_4);#entropy\n", "R = H_X*r;#information rate\n", "\n", "#results\n", "print \"i.Entropy (bits/symbol) = \",round(H_X,1)\n", "print \"ii.The information rate of all symbols (f_m bits/seconds) = \", round(R,1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i.Entropy (bits/symbol) = 1.8\n", "ii.The information rate of all symbols (f_m bits/seconds) = 3.6\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15 - pg 497" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the information rate\n", "import math\n", "from math import log\n", "#given\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "#given symbols are equally likely all the symbols the probabilities are same\n", "Px_1 = 1./4;#probability of first symbol\n", "Px_2 = 1./4;#probability of second symbol\n", "Px_3 = 1./4;#probability of third symbol\n", "Px_4 = 1./4;#probability of fourth symbol\n", "r = 2#average symbol rate from problem 11.14\n", "\n", "#calculaitons\n", "H_X = Px_1*log2(1/Px_1) + Px_2*log2(1/Px_2) + Px_3*log2(1/Px_3) + Px_4*log2(1/Px_4);#entropy\n", "R = H_X*r;#information rate\n", "\n", "#results\n", "print \"i.The information rate of all symbols (f_m bits/seconds) = \", R\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i.The information rate of all symbols (f_m bits/seconds) = 4.0\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16 - pg 498" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Entropy and rate of information\n", "import math\n", "from math import log\n", "#given\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "Px_1 = 1./2;#probability of first symbol\n", "Px_2 = 1./4;#probability of second symbol\n", "Px_3 = 1./8;#probability of third symbol\n", "Px_4 = 1./16;#probability of fourth symbol\n", "Px_4 = 1./16;#probability of fifth symbol\n", "T_b = 1*10**-3#time required for emittion of each symbol\n", "r = 1./(T_b)#symbol rate\n", "\n", "#calculations\n", "H_X = Px_1*log2(1/Px_1) + Px_2*log2(1/Px_2) + Px_3*log2(1/Px_3) + Px_4*log2(1/Px_4) + Px_4*log2(1/Px_4);\n", "R = r*H_X;#information rate\n", "\n", "#results\n", "print \"i.Entropy of five symbols (bits/symbol) = \",H_X\n", "print \"ii.Rate of information (bits/sec) = \",R\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i.Entropy of five symbols (bits/symbol) = 1.875\n", "ii.Rate of information (bits/sec) = 1875.0\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17 - pg 498" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the rate of information\n", "import math\n", "from math import log\n", "#given\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "Px_1 = 1./2;#probability of first symbol\n", "Px_2 = 1./4;#probability of second symbol\n", "Px_3 = 1./8;#probability of third symbol\n", "Px_4 = 1./16;#probability of fourth symbol\n", "Px_5 = 1./16;#probability of fifth symbol\n", "r = 16#outcomes per second\n", "\n", "#calculations\n", "H_X = Px_1*log2(1/Px_1) + Px_2*log2(1/Px_2) + Px_3*log2(1/Px_3) + Px_4*log2(1/Px_4) + Px_5*log2(1/Px_5);\n", "R = r*H_X;#information rate\n", "\n", "#result\n", "print \"Rate of information (bits/sec) = \",R\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rate of information (bits/sec) = 30.0\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18 - pg 499" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the rate of information\n", "import math\n", "from math import log\n", "#given\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "Px_1 = 1./4;#probability of first symbol\n", "Px_2 = 1./5;#probability of second symbol\n", "Px_3 = 1./5;#probability of third symbol\n", "Px_4 = 1./10;#probability of fourth symbol\n", "Px_5 = 1./10;#probability of fifth symbol\n", "Px_6 = 1./20;#probability of sixth symbol\n", "Px_7 = 1./20;#probability of seventh symbol\n", "Px_8 = 1./20;#probability of eigith symbol\n", "f_m = 10*10**3#freuency of tranamitting symbol\n", "\n", "#calculations\n", "H_X = Px_1*log2(1/Px_1) + Px_2*log2(1/Px_2) + Px_3*log2(1/Px_3) + Px_4*log2(1/Px_4) + Px_5*log2(1/Px_5) + Px_6*log2(1/Px_6)+ Px_7*log2(1/Px_7)+ Px_8*log2(1/Px_8);#entropy\n", "f_s = 2*f_m#sampling frequency\n", "r = f_s#sampling frequency equal to rate of transmission\n", "R = r*H_X;#information rate\n", "\n", "#result\n", "print \"Rate of information (bits/sec) = \",round(R,0)\n", "print \"Note:Their mistake in calculation of H_X in textbook\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rate of information (bits/sec) = 54829.0\n", "Note:Their mistake in calculation of H_X in textbook\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19 - pg 502" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the channel matrix\n", "import numpy\n", "#given\n", "#from fig\n", "P_X = numpy.matrix([.5, .5])#x matrix\n", "P_Xd = numpy.matrix([[.5, 0],[0, .5]])#diagonal x matrix\n", "#calculations\n", "P_YX = numpy.matrix([[.9, .1],[.2, .8]]);#yx matrix representation of given fig\n", "P_Y = P_X*P_YX#y matrix\n", "P_XY = P_Xd * P_YX#xy matrix\n", "\n", "#results\n", "print \"i.Channel matrix of the channelP_YX \"\n", "print(P_YX)\n", "print \"ii.a.P(y1) =\",P_Y[0,0]\n", "print \" b.P(y2) = \",P_Y[0,1]\n", "print \"iii.a.P(x1,y2) = \",P_XY[0,1]\n", "print \" b.P(x2,y1) = \",P_XY[1,0]\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i.Channel matrix of the channelP_YX \n", "[[ 0.9 0.1]\n", " [ 0.2 0.8]]\n", "ii.a.P(y1) = 0.55\n", " b.P(y2) = 0.45\n", "iii.a.P(x1,y2) = 0.05\n", " b.P(x2,y1) = 0.1\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20 - pg 503" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Channel matrix\n", "import numpy\n", "#given\n", "P_X = numpy.matrix([.5, .5])#x matrix\n", "#calculations\n", "P_YX = numpy.matrix([[.9, .1],[.2, .8]]);#yx matrix representation of given fig\\\n", "P_ZY = numpy.matrix([[.9, .1],[.2, .8]]);#yx matrix representation of given fig\n", "P_Y = P_X *P_YX#y matrix\n", "P_ZX = P_YX * P_ZY#zx matrix\n", "P_Z = P_X *P_ZX#z matrix\n", "\n", "\n", "#results\n", "print \"i.Channel matrix of the channelP_ZX \"\n", "print(P_ZX)\n", "print(\"Matrix P(Z)\")\n", "print(P_Z)\n", "print \"a.P(Z1) = \",P_Z[0,0]\n", "print \"b.P(Z2) = \",P_Z[0,1]\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i.Channel matrix of the channelP_ZX \n", "[[ 0.83 0.17]\n", " [ 0.34 0.66]]\n", "Matrix P(Z)\n", "[[ 0.585 0.415]]\n", "a.P(Z1) = 0.585\n", "b.P(Z2) = 0.415\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 21 - pg 504" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the probability associated with channel outputs\n", "#given\n", "import numpy\n", "P_X = numpy.matrix([.5, .5])#x matrix\n", "P_YX = numpy.matrix([[.8, .2, 0], [0, .2, .8]]);#yx matrix representation of given fig\n", "\n", "#calculations\n", "P_Y = P_X*P_YX;\n", "\n", "#results\n", "print \"probability associated with the channel outputs for p=.2 is\"\n", "print(P_Y)\n", "print \"a.P(Y1) = \",P_Y[0,0]\n", "print \"b.P(Y2) = \",P_Y[0,1]\n", "print \"C.P(Y3) = \",P_Y[0,2]\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "probability associated with the channel outputs for p=.2 is\n", "[[ 0.4 0.2 0.4]]\n", "a.P(Y1) = 0.4\n", "b.P(Y2) = 0.2\n", "C.P(Y3) = 0.4\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 28 - pg 504" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the I_XY value\n", "import numpy\n", "import math\n", "from math import log\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "#given\n", "#wkt P_Y = P_X*P_YX from previous problems\n", "alfa = .5\n", "P_1 = .1#probability for first case\n", "P_2 = .5#probability for second case\n", "\n", "#calculations\n", "P_X = numpy.matrix([alfa, alfa]);\n", "#first case\n", "P_YX = ([[1-P_1, P_1],[P_1, 1-P_1]]);\n", "P_Y1 = P_X*P_YX;\n", "H_Y1 = -P_Y1[0,0]*log2(P_Y1[0,0])-P_Y1[0,1]*log2(P_Y1[0,1]);\n", "Q_1 = P_1*log2(P_1) + (1-P_1)*log2(1-P_1)#from proof\n", "I_XY1 = 1 + Q_1;\n", "#second case\n", "P_YX = ([[1-P_2, P_2],[P_2, 1-P_2]]);\n", "P_Y2 = P_X*P_YX;\n", "H_Y2 = -P_Y2[0,0]*log2(P_Y2[0,0])-P_Y2[0,1]*log2(P_Y2[0,1]);\n", "Q_2 = P_2*log2(P_2) + (1-P_2)*log2(1-P_2)#from proof \n", "I_XY2 = 1 + Q_2;\n", "\n", "#results\n", "print \"I_XY for the first case = \",round(I_XY1,3)\n", "print \"I_XY for the second case = \",round(I_XY2,2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "I_XY for the first case = 0.531\n", "I_XY for the second case = 0.0\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 32 - pg 518" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Entropy in all cases\n", "import math\n", "from math import log\n", "\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "#given\n", "a1 = 1.\n", "a2 = 2.\n", "a3 = .5\n", "\n", "#calculations\n", "H_X1 = log2(a1);#Entropy for first case\n", "H_X2 = log2(a2);#Entropy for second case\n", "H_X3 = log2(a3);#Entropy for third case\n", "\n", "#results\n", "print \"i.Entropy for first case = \",H_X1\n", "print \"ii.Entropy for second case = \",H_X2\n", "print \"iii.Entropy for third case = \",H_X3\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i.Entropy for first case = 0.0\n", "ii.Entropy for second case = 1.0\n", "iii.Entropy for third case = -1.0\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 35 - pg 520" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the capacity of channel\n", "\n", "import math\n", "from math import log\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "#given\n", "B = 4000.#bandwidth of AWGN channel\n", "S = .1*10**-3#power of signal\n", "neta = 2*10**-12#spectral dencity \n", "N = neta*B;#power \n", "\n", "#calculations \n", "C = B * log2(1 + (S/N));#capacity of channel\n", "\n", "#result\n", "print \"Capacity of channel (b/s) = \",round(C,0)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Capacity of channel (b/s) = 54439.0\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 36 - pg 521" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the information rate, bandwidth and S/N ratio\n", "import math\n", "from math import log\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "#given\n", "fm=4000. #Hz\n", "tim=1.25\n", "Pi=1/256.\n", "SN=100.\n", "#calculations \n", "fs=2*fm\n", "r=fs*tim\n", "H=log2(1/Pi)\n", "R=r*H\n", "C = r* log2(1 + SN);#capacity of channel\n", "SN2=(1/Pi-1)\n", "B2=R/log2(1+SN)\n", "#result\n", "print \"information rate of source (kb/s) = \",R/1000.\n", "print \"Capacity of channel (b/s) = \",round(C,0)\n", "print \"Final S/N ratio = \",SN2\n", "print \"bandwidth required (kHz) = \",round(B2/1000.,0)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "information rate of source (kb/s) = 80.0\n", "Capacity of channel (b/s) = 66582.0\n", "Final S/N ratio = 255.0\n", "bandwidth required (kHz) = 12.0\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 37 - pg 524" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the efficiency of code and code redundancy\n", "\n", "import math\n", "from math import log\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "#given\n", "Px_1 = 0.9#probability of first symbol\n", "Px_2 = 0.1#probability of second symbol\n", "n1 = 1.#length of the code for x_1\n", "n2 =1.#length of code for x_2\n", "\n", "#calculations\n", "#we know that the average code length L per symbol\n", "L = Px_1*n1 + Px_2*n2#code length\n", "H_X = -Px_1*log2(Px_1) - Px_2*log2(Px_2) #entropy\n", "neta = H_X/L#efficiency \n", "neta1 = neta*100#neta in percentage\n", "gama = 1 - neta#redundancy\n", "gama1 = gama*100#gama in percentage\n", "\n", "#results\n", "print \"i.Efficiency of code (percent) = \",round(neta1,1)\n", "print \"ii.Code redundancy (percent) = \",round(gama1,1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i.Efficiency of code (percent) = 46.9\n", "ii.Code redundancy (percent) = 53.1\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 38 - pg 524" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the efficiency of code and code redundancy\n", "import math\n", "from math import log\n", "#given\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "Px_1 = 0.81#probability of first symbol\n", "Px_2 = .09#probability of second symbol\n", "Px_3 = .09#probability of third symbol\n", "Px_4 = 0.01#probability of forth symbol\n", "n1 = 1.#length of code for a_1\n", "n2 =2.#length of code for a_2\n", "n3 = 3.#length of code for a_3\n", "n4 = 3.#length of code for a_4\n", "\n", "#calculations\n", "#we know that the average code length L per symbol\n", "L = Px_1*n1 + Px_2*n2 + Px_3*n3 + Px_4*n4 #code length\n", "H_X = -Px_1*log2(Px_1) - Px_2*log2(Px_2) - Px_3*log2(Px_3) - Px_4*log2(Px_4)#entropy \n", "neta = H_X/L#efficiency \n", "neta1 = neta*100#neta in percentage\n", "gama = 1 - neta#redundancy\n", "gama1 = gama*100#gama in percentage\n", "\n", "#results\n", "print \"i.Efficiency of code (percent) = \",round(neta1,1)\n", "print \"ii.Code redundancy (percent) = \",round(gama1,1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "i.Efficiency of code (percent) = 72.7\n", "ii.Code redundancy (percent) = 27.3\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 44 - pg 529" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the efficiency \n", "import math\n", "from math import log\n", "#given\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "P_x1 = 1./2#probability of first symbol\n", "P_x2 = 1./4#probability of second symbol\n", "P_x3 = 1./8#probability of third symbol\n", "P_x4 = 1./8#probability of fouth symbol\n", "n1 = 1.\n", "n2 = 2.\n", "n3 = 3.\n", "n4 = 3.\n", "\n", "#calculations\n", "I_x1 = -log2(P_x1);\n", "I_x2 = -log2(P_x2);\n", "I_x3 = -log2(P_x3);\n", "I_x4 = -log2(P_x4);\n", "H_x = P_x1*I_x1 + P_x2*I_x2 + P_x3*I_x3 + P_x4*I_x4;\n", "L = P_x1*n1 + P_x2*n2 + P_x3*n3 + P_x4*n4;\n", "neta = H_x/L;\n", "P_neta = neta*100#efficiency in percentage\n", "\n", "#results\n", "print \"Efficiency = \",neta\n", "print \"Efficiency in percentage (percent) = \",P_neta\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Efficiency = 1.0\n", "Efficiency in percentage (percent) = 100.0\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 45 - pg 532" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the efficiency using shannon code and huffman code\n", "import math\n", "from math import log\n", "#given\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "P_x1 = .2#probability of first signal\n", "P_x2 = .2#probability of second signal\n", "P_x3 = .2#probability of third signal\n", "P_x4 = .2#probability of fourth signal\n", "P_x5 = .2#probability of fifth signal\n", "n1 = 2.#number of bits in code obtained from table given textbook\n", "n2 = 2.#number of bits in code obtained from table given textbook\n", "n3 = 2.#number of bits in code obtained from table given textbook\n", "n4 = 3.#number of bits in code obtained from table given textbook\n", "n5 = 3.#number of bits in code obtained from table given textbook\n", "\n", "#calculations\n", "I_x1 = -log2(P_x1);\n", "I_x2 = -log2(P_x2);\n", "I_x3 = -log2(P_x3);\n", "I_x4 = -log2(P_x4);\n", "I_x5 = -log2(P_x5);\n", "H_x = P_x1*I_x1 + P_x2*I_x2 + P_x3*I_x3 + P_x4*I_x4 + P_x5*I_x5;#entropy\n", "L1 = P_x1*n1 + P_x2*n2 + P_x3*n3 + P_x4*n4 + P_x5*n5;\n", "neta1 = H_x/L1;\n", "P_neta1 = neta1*100#efficiency in percentage using Shannon Fano code\n", "L2 = P_x1*n1 + P_x2*n2 + P_x3*n3 +P_x4*n4 +P_x5*n5\n", "neta2 = H_x/L2;\n", "P_neta2 = neta2*100#efficiency in percentage using huffman code\n", "\n", "#results\n", "print \"Efficiency in percentage using Shannon Fano code (percent) = \",round(P_neta1,1)\n", "print \"Efficiency in percentage using huffman code (percent) = \",round(P_neta2,1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Efficiency in percentage using Shannon Fano code (percent) = 96.7\n", "Efficiency in percentage using huffman code (percent) = 96.7\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 46 - pg 532" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the efficiency using shannon code and huffman code\n", "import math\n", "from math import log\n", "#given\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "P_x1 = .4#probability of first signal\n", "P_x2 = .19#probability of second signal\n", "P_x3 = .16#probability of third signal\n", "P_x4 = .15#probability of fourth signal\n", "P_x5 = .1#probability of fifth signal\n", "n1 = 1.#number of bits in code obtained from table given textbook\n", "n2 = 2.#number of bits in code obtained from table given textbook\n", "n3 = 2.#number of bits in code obtained from table given textbook\n", "n4 = 3.#number of bits in code obtained from table given textbook\n", "n5 = 3.#number of bits in code obtained from table given textbook\n", "\n", "#calculations\n", "I_x1 = -log2(P_x1);\n", "I_x2 = -log2(P_x2);\n", "I_x3 = -log2(P_x3);\n", "I_x4 = -log2(P_x4);\n", "I_x5 = -log2(P_x5);\n", "H_x = P_x1*I_x1 + P_x2*I_x2 + P_x3*I_x3 + P_x4*I_x4 + P_x5*I_x5;#entropy\n", "L1 = P_x1*n1 + P_x2*n2 + P_x3*n3 + P_x4*n4 + P_x5*n5;\n", "neta1 = H_x/L1;\n", "P_neta1 = neta1*100#efficiency in percentage using Shannon Fano code\n", "L2 = P_x1*1 + (P_x2 + P_x3 +P_x4 +P_x5 )*3\n", "neta2 = H_x/L2;\n", "P_neta2 = neta2*100#efficiency in percentage using huffman code\n", "\n", "#results\n", "print \"Efficiency in percentage using Shannon Fano code (percent) = \",round(P_neta1,1)\n", "print \"Efficiency in percentage using huffman code (percent) = \",round(P_neta2,1)\n", "print \"Note: There is mistake in the textbook in calculation of L using SHannon Fano code\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Efficiency in percentage using Shannon Fano code (percent) = 116.2\n", "Efficiency in percentage using huffman code (percent) = 97.7\n", "Note: There is mistake in the textbook in calculation of L using SHannon Fano code\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 47 - pg 532" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Efficiency\n", "import math\n", "from math import log\n", "#given\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "P_x1 = .05#probability of first signal\n", "P_x2 = .15#probability of second signal\n", "P_x3 = .2#probability of third signal\n", "P_x4 = .05#probability of fourth signal\n", "P_x5 = .15#probability of fifth signal\n", "P_x6 = .3#probability of sixth signal\n", "P_x7 = .1#probability of seventh signal\n", "n1 = 4.#number of bits in code obtained from table given textbook\n", "n2 = 3.#number of bits in code obtained from table given textbook\n", "n3 = 2.#number of bits in code obtained from table given textbook\n", "n4 = 4.#number of bits in code obtained from table given textbook\n", "n5 = 3.#number of bits in code obtained from table given textbook\n", "n6 = 2.#number of bits in code obtained from table given textbook\n", "n7 = 3.#number of bits in code obtained from table given textbook\n", "\n", "#calculations\n", "I_x1 = -log2(P_x1);\n", "I_x2 = -log2(P_x2);\n", "I_x3 = -log2(P_x3);\n", "I_x4 = -log2(P_x4);\n", "I_x5 = -log2(P_x5);\n", "I_x6 = -log2(P_x6);\n", "I_x7 = -log2(P_x7);\n", "H_x = P_x1*I_x1 + P_x2*I_x2 + P_x3*I_x3 + P_x4*I_x4 + P_x5*I_x5 + P_x6*I_x6 + P_x7*I_x7;#entropy\n", "L = P_x1*n1 + P_x2*n2 + P_x3*n3 + P_x4*n4 + P_x5*n5 + P_x6*n6 + P_x7*n7;\n", "neta = (H_x*100)/L#Efficiency in percentage\n", "\n", "#results\n", "print \"Efficiency in percentage (percent) = \",round(neta,2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Efficiency in percentage (percent) = 98.88\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 49 - pg 534" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Variance of codeword length\n", "\n", "#given\n", "P_x1 = .4#probability of first signal\n", "P_x2 = .2#probability of second signal\n", "P_x3 = .8#probability of third signal\n", "P_x4 = .08#probability of fourth signal\n", "P_x5 = .02#probability of fifth signal\n", "n1 = 2.#number of bits in code obtained from table given textbook\n", "n2 = 3.#number of bits in code obtained from table given textbook\n", "n3 = 1.#number of bits in code obtained from table given textbook\n", "n4 = 4.#number of bits in code obtained from table given textbook\n", "n5 = 4.#number of bits in code obtained from table given textbook\n", "\n", "#calculations\n", "L = P_x1*n1 + P_x2*n2 + P_x3*n3 + P_x4*n4 + P_x5*n5;#average codeword length per symbol\n", "#since sigma = sqrt(summation of product of probability and (n- L)**2)\n", "sigmasquare = P_x1*(n1-L)**2 + P_x2*(n2-L)**2 +P_x3*(n3-L)**2 + P_x4*(n4-L)**2 +P_x5*(n5-L)**2;#Variance of codewoed length\n", "\n", "#results\n", "print \"Variance of codeword length = \",sigmasquare\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Variance of codeword length = 2.42\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 50 - pg 535" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Entropy and Information rate\n", "import math\n", "from math import log\n", "#given\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "P_x1 = 1./2#probability of first signal\n", "P_x2 = 1./4#probability of second signal\n", "P_x3 = 1./8#probability of third signal\n", "P_x4 = 1./16#probability of fourth signal\n", "P_x5 = 1./32#probability of fifth signal\n", "P_x6 = 1./32#probability of sixth signal\n", "r = 16#message rate in outcomes per second\n", "\n", "#calculations\n", "I_x1 = -log2(P_x1);\n", "I_x2 = -log2(P_x2);\n", "I_x3 = -log2(P_x3);\n", "I_x4 = -log2(P_x4);\n", "I_x5 = -log2(P_x5);\n", "I_x6 = -log2(P_x6);\n", "H_X = P_x1*I_x1 + P_x2*I_x2 + P_x3*I_x3 + P_x4*I_x4 + P_x5*I_x5 + P_x6*I_x6 #entropy\n", "R = H_X*r#Information rate\n", "\n", "#results\n", "print \"Entropy of the system (bits/message) = \",H_X\n", "print \"Information rate (bits/seconds) = \",R\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Entropy of the system (bits/message) = 1.9375\n", "Information rate (bits/seconds) = 31.0\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 51 - pg 535" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Entropy\n", "import numpy\n", "#given\n", "import math\n", "from math import log\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "P_x1 = .3#probability of first signal\n", "P_x2 = .4#probability of second signal\n", "P_x3 = .3#probability of third signal\n", "P_YX = numpy.matrix([[.8, .2, 0],[0, .1, 0],[0, .3, 0.7]])#matrix obtained from the figure \n", "\n", "#calculations\n", "I_x1 = -log2(P_x1);\n", "I_x2 = -log2(P_x2);\n", "I_x3 = -log2(P_x3);\n", "H_X = P_x1*I_x1 + P_x2*I_x2 + P_x3*I_x3 #entropy\n", "P_y1 = P_YX[0,0]*P_x1 + P_YX[0,1]*P_x1 + P_YX[0,2]*P_x1;\n", "P_y2 = P_YX[1,0]*P_x2 + P_YX[1,1]*P_x2 + P_YX[1,2]*P_x2;\n", "P_y3 = P_YX[2,0]*P_x3 + P_YX[2,1]*P_x3 + P_YX[2,2]*P_x3;\n", "I_y1 = -log2(P_y1);\n", "I_y2 = -log2(P_y2);\n", "I_y3 = -log2(P_y3);\n", "H_Y = -P_y1*I_y1 - P_y2*I_y2 - P_y3*I_y3 #entropy\n", "\n", "#results\n", "print \" Entropy H(X) = \",round(H_X,3)\n", "print \"Entropy H(Y) = \",round(H_Y,3)\n", "print \" Note:There is mistake in the calculation of P_y3 in the textbook so their is change in entropy H_Y\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Entropy H(X) = 1.571\n", "Entropy H(Y) = -1.228\n", " Note:There is mistake in the calculation of P_y3 in the textbook so their is change in entropy H_Y\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 52 - pg 536" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Entropy of the second order extension\n", "import math\n", "from math import log\n", "#given\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "\n", "P_x1 = .7#probability of first signal\n", "P_x2 = .15#probability of second signal\n", "P_x3 = .15#probability of third signal\n", "n = 2#second order extention\n", "\n", "#calculations\n", "I_x1 = -log2(P_x1);\n", "I_x2 = -log2(P_x2);\n", "I_x3 = -log2(P_x3);\n", "H_x = P_x1*I_x1 + P_x2*I_x2 + P_x3*I_x3#entropy\n", "H_x2 = n*H_x#entropy of second order extention\n", "\n", "#results\n", "print \"Entropy of second order extension (bits/symbol) = \",round(H_x2,3)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Entropy of second order extension (bits/symbol) = 2.363\n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 54 - pg 537" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Entropy of the source\n", "import math\n", "from math import log\n", "#given\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "\n", "#given\n", "P_x1 = 1./3#probability of first signal\n", "P_x2 = 1./6#probability of second signal\n", "P_x3 = 1./4#probability of third signal\n", "P_x4 = 1./4#probability of fourth signal\n", "\n", "#calculations\n", "I_x1 = -log2(P_x1);\n", "I_x2 = -log2(P_x2);\n", "I_x3 = -log2(P_x3);\n", "I_x4 = -log2(P_x4);\n", "H_x = P_x1*I_x1 + P_x2*I_x2 + P_x3*I_x3 + P_x4*I_x4 #entropy\n", "\n", "#results\n", "print \"Entropy of the source (bits/symbol) = \",round(H_x,4)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Entropy of the source (bits/symbol) = 1.9591\n" ] } ], "prompt_number": 32 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 55 - pg 538" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Average number of bits per message\n", "\n", "#given\n", "P_x1 = 1./2#probability of first signal\n", "P_x2 = 1./4#probability of second signal\n", "P_x3 = 1./8#probability of third signal\n", "P_x4 = 1./16#probability of fourth signal\n", "P_x5 = 1./16#probability of fifth signal\n", "n1 = 1.#number of bits in code obtained from table given textbook\n", "n2 = 2.#number of bits in code obtained from table given textbook\n", "n3 = 3.#number of bits in code obtained from table given textbook\n", "n4 = 4.#number of bits in code obtained from table given textbook\n", "n5 = 4.#number of bits in code obtained from table given textbook\n", "\n", "#calculations\n", "L = P_x1*n1 + P_x2*n2 + P_x3*n3 + P_x4*n4 + P_x5*n5;#Average number of bits per message\n", "\n", "#results\n", "print \"Average number of bits per message (bits) = \",L\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Average number of bits per message (bits) = 1.875\n" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 56 - pg 538" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Information capacity of telephone channel\n", "import math\n", "from math import log,exp\n", "#given\n", "def log2(x):\n", "\ty=log(x)/log(2)\n", " \treturn y\n", "B = 3.4*10**3#bandwidth\n", "SbyN = 30#signal to the noise ratio in dB\n", "\n", "\n", "#calculations\n", "SbyN1 = exp((SbyN/10)*log(10))#signal to noise ratio \n", "C = B*log2(1+SbyN1);\n", "\n", "#result\n", "print \"Information capacity of the telephone channel (kbps) = \",round(C/1000.,2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Information capacity of the telephone channel (kbps) = 33.89\n" ] } ], "prompt_number": 34 } ], "metadata": {} } ] }