{ "metadata": { "name": "", "signature": "sha256:344aa83aae7640fc5c3f2bc230bb6d0ed2b2c16bf41e02ab7ccae093773e6e18" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "CHAPTER01:SIGNALS AND SPECTRA" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E09 : Pg 1.13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Page Number: 1.13\n", "# Example 1.9\n", "# Given,\n", "# Signal is x(t)= e^(-at) * u(t)\n", "# unity function u(t)=1 for 0 to infinity \n", "# therefore\n", "import math,numpy\n", "x=1;\n", "# We assume 'infinity' value as 10 and the value of 'a' is 1\n", "#t= 0:1:10;\n", "t=numpy.linspace(0,10,num=11)\n", "a=1;# a >0\n", "z=((math.e)**(-a*t) * x);\n", "y=numpy.fft.fft(z);\n", "print 'fourier transform of x(t)=',y" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "fourier transform of x(t)= [ 1.58195029+0.j 1.33722176-0.38516024j 1.02105993-0.4033185j\n", " 0.84862839-0.29364174j 0.76732853-0.17191927j 0.73478625-0.05628763j\n", " 0.73478625+0.05628763j 0.76732853+0.17191927j 0.84862839+0.29364174j\n", " 1.02105993+0.4033185j 1.33722176+0.38516024j]\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E10 : Pg 1.14" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Page Number: 1.14\n", "# Example 1.10\n", "# Given,\n", "# Signal is x(t)= e**|-a|t * u(t)\n", "# unity function u(t)=1 for 0 to infinity \n", "# therefore\n", "import numpy,math\n", "x=1;\n", "# We assume 'infinity' value as 10 and the value of 'a' is 1\n", "t= numpy.linspace(0,10,num=11);\n", "a1=1;# For a >0\n", "a2=-1; # For a <0\n", "z=((math.e)**(a2*t) * x)+((math.e)**(a1*t) * x);\n", "y=numpy.fft.fft(z);\n", "print'fourier transform of x(t)=',y" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "fourier transform of x(t)= [ 34846.35579562 +0.j 20193.20071216+23060.75353691j\n", " 1262.96607876+24147.94540875j -9061.39666752+17581.25336274j\n", " -13929.23742795+10293.34682733j -15877.71059326 +3370.11697016j\n", " -15877.71059326 -3370.11697016j -13929.23742795-10293.34682733j\n", " -9061.39666752-17581.25336274j 1262.96607876-24147.94540875j\n", " 20193.20071216-23060.75353691j]\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E11 : Pg 1.14" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Page Number: 1.14\n", "# Example 1.11\n", "# (a)\n", "# Given\n", "# Signal is x(t) = rect(t)\n", "# rect(t) = 1 for -a< |t| < a and 0 elsewhere\n", "# Therefore\n", "# We find out fourier transform of x(t)= 1 for -a< |t| < a thus,\n", "import math,numpy\n", "x=([1]);\n", "a= 200; # Assume \n", "t= numpy.linspace(-a,a,num=2*a+1); # range for fourier transform\n", "y=numpy.fft.fft(x);\n", "print'Fourier transform of x(t)=',y\n", "\n", "\n", "# (b)\n", "\n", "# Given\n", "# Signal is x(t) = rect(t)\n", "# rect(t) = 1 for -a/4< |t| < a/4 and 0 elsewhere\n", "# Therefore\n", "# We find out fourier transform of x(t)= 1 for -a/4< |t| < a/4 thus,\n", "import numpy\n", "x=([1]);\n", "a= 200; # Assume \n", "t= numpy.linspace(-a/4,a/4,num=(a/2)+1);# range for fourer transform\n", "y=numpy.fft.fft(x);\n", "print'Fourier transform of x(t)=',y\n", "\n", "# (c)\n", "\n", "# Given\n", "# Signal is x(t) = rect(t)\n", "# rect(t) = 1 for b < |t| < b + a/2 and 0 elsewhere\n", "# Therefore\n", "# We find out fourier transform of x(t)= 1 for b < |t| < b+ a/2 thus,\n", "import numpy\n", "x=([1]);\n", "a= 200; # Assume \n", "b=100; # Assume\n", "t=numpy.linspace(b,(b+(a/2)),num=((a/2)+1)) ;# range for fourer transform\n", "y=numpy.fft.fft(x);\n", "print'Fourier transform of x(t)=',y" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Fourier transform of x(t)= [ 1.+0.j]\n", "Fourier transform of x(t)= [ 1.+0.j]\n", "Fourier transform of x(t)= [ 1.+0.j]\n" ] } ], "prompt_number": 3 } ], "metadata": {} } ] }