{ "metadata": { "name": "", "signature": "sha256:2de7fc45fa4af4f15b7c3a8c570a56406c01593cbaa6b905a79129b1b124ba5a" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter09 : Voltage Regulators" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 9.1 : page 380" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "Iq=5 #in mA\n", "Vo=18 #in volts\n", "Vreg=15 #in volts\n", "R1=Vreg/(10*Iq*10**-3) #in Ohms Iq must be in Amperes here\n", "R2=(Vo-Vreg)/(11*Iq*10**-3) #in Ohms Iq must be in Amperes here\n", "print \"the values of R1 and R2 are : %0.2f & %0.1f ohms\"%(R1,R2) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the values of R1 and R2 are : 300.00 & 54.5 ohms\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 9.2 : page 381" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "Vreg=8 #in volts as IC 7808 is given\n", "IL=100 #in mA\n", "IR=100 #in mA\n", "Iq=0 #in mA\n", "RL=50 #in ohms\n", "# let find the value of resistor to deliver required current\n", "R=Vreg/(IR*10**-3) # in ohms so current must be in amperes\n", "print \"Required Resistance = %0.2f ohms \"%R \n", "Vo = (IR*10**-3)*R+(IL*10**-3)*RL \n", "print \"Vo = %0.2f Volts\"%Vo\n", "#considering 2 volt dropout\n", "Vdropout=2 #in volts\n", "VI=Vo+Vdropout \n", "print \"Input voltage, VI = %0.2f Volts \"%VI " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Required Resistance = 80.00 ohms \n", "Vo = 13.00 Volts\n", "Input voltage, VI = 15.00 Volts \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 9.3 : page 382" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "#given data\n", "RL1=100 #in ohms\n", "RL2=8 #in ohms\n", "RL3=1 #in ohms\n", "VEBon=0.7 #in volts\n", "Beta=25 \n", "R=5 #in ohms\n", "#device used 7808 so V=8 volts\n", "V=8 \n", "# part(i) for a laod of 100 ohms\n", "IL1=V/RL1 #in amperes\n", "VacR1=IL1*R \n", "print \"Part(i) : \"\n", "print \"VacR = %0.2f Volts \"%VacR1\n", "print \" Which is less than the given VEBon. Hence Transistor remains OFF.\"\n", "#so Io=IL and Ic=0\n", "Io1=IL1 #in amperes \n", "Ic1=0 \n", "print \"Ic and Io for the 100 ohms load are %0.2f mA & %0.2f Amperes \"%(Io1*1E3,Ic1)\n", "# part(ii) for a laod of 8 ohms\n", "IL2=V/RL2 #in amperes\n", "VacR2=IL2*R \n", "print \"Part(ii) : \"\n", "print \"The voltage across R will be = %0.2f Volts \"%VacR2\n", "print \"Which is greater than the given VEBon.Hence Transistor will be ON.\"\n", "#expression for Io\n", "Io2=((IL2+(Beta*VEBon)/R))/(Beta+1) #in amperes \n", "Ic2=IL2-Io2 \n", "print \"Ic and Io for the 8 ohms load are %0.f & %0.f Amperes \"%(Io2*1e3,Ic2*1e3)\n", "\n", "# part(iii) for a laod of 1 ohms\n", "IL3=V/RL3 #in amperes\n", "VacR3=IL3*R \n", "print \"Part(iii) : \"\n", "print \"VacR = %0.2f Volt \"%VacR3\n", "print \" Which is greater than the given VEBon.Hence Transistor will be ON.\"\n", "#expression for Io\n", "Io3=((IL3+(Beta*VEBon)/R))/(Beta+1) #in amperes \n", "Ic3=IL3-Io3 \n", "print \"Ic and Io for the 1 ohms load are %0.f & %0.3f Amperes \"%(Io3*1e3,Ic3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part(i) : \n", "VacR = 0.40 Volts \n", " Which is less than the given VEBon. Hence Transistor remains OFF.\n", "Ic and Io for the 100 ohms load are 80.00 mA & 0.00 Amperes \n", "Part(ii) : \n", "The voltage across R will be = 5.00 Volts \n", "Which is greater than the given VEBon.Hence Transistor will be ON.\n", "Ic and Io for the 8 ohms load are 173 & 827 Amperes \n", "Part(iii) : \n", "VacR = 40.00 Volt \n", " Which is greater than the given VEBon.Hence Transistor will be ON.\n", "Ic and Io for the 1 ohms load are 442 & 7.558 Amperes \n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 9.4 : page 384" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "#for the given IC LM317: \n", "Iadj=100 #in micro amperes\n", "Vref=1.25 #in volts\n", "R1=240 #in ohms\n", "#(i) For Vo=2 volts\n", "#on solving equation Vo=Vref(1+R2/R1)+R2*Iadj\n", "Vo=2 #in volts\n", "R2=(Vo-Vref)/((Vref/R1)+Iadj*10**-6) \n", "print \"for Output 2 volts the requires value of resistance R2 = %0.f ohms \"%(R2)\n", "#(i) For Vo=12 volts\n", "Vo1=12 #in volts\n", "#on solving equation Vo=Vref(1+R2/R1)+R2*Iadj\n", "R21=(Vo1-Vref)/(Vref/R1+Iadj*10**-6) \n", "print \"for Output 12 volts the requires value of resistance R2 = %0.2f kohms\"%(R21/1e3)\n", "#use potentiometer for adjustable value\n", "print \"Hence use 3kohm potentiometer to set R2.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "for Output 2 volts the requires value of resistance R2 = 141 ohms \n", "for Output 12 volts the requires value of resistance R2 = 2.03 kohms\n", "Hence use 3kohm potentiometer to set R2.\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 9.5 : page 385" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "#for the given IC LM317: \n", "Iadj=100 #in micro amperes\n", "Vref=1.25 #in volts\n", "R1=240 #in ohms\n", "#we have output equation Vo=Vref(1+R2/R1)+R2*Iadj\n", "R2min=0 #in ohms\n", "R2max=3000 #in ohms\n", "Vomin=Vref*(1+R2min/R1)+R2min*Iadj*10**-6 #in volts\n", "Vomax=Vref*(1+R2max/R1)+R2max*Iadj*10**-6 #in volts\n", "print \"Minimum output voltage = %0.2f Volts \"%(Vomin)\n", "print \"Maximum output voltage = %0.3f Volts \"%Vomax" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Minimum output voltage = 1.25 Volts \n", "Maximum output voltage = 17.175 Volts \n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 9.6 : page 389" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "#IC 723\n", "Vsense=0.7#in volts\n", "Vo=5 #in volts\n", "Im=50 #in mA\n", "Id=1 #in mA\n", "Vr=7 #in volts\n", "R1=(Vr-Vo)/(Id*10**-3) \n", "R2=Vo/(Id*10**-3) \n", "R3=(R1*R2)/(R1+R2) \n", "Rcl=Vsense/(Im*10**-3) \n", "print \"various resistance values for the circuit is as follows : \"\n", "print \"R1 = %0.2f kohm\"%(R1/1e3)\n", "print \"R2 = %0.2f kohm\"%(R2/1e3)\n", "print \"R3 = %0.2f kohm\"%(R3/1e3)\n", "print \"Rcl = %0.2f ohm\"%Rcl" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "various resistance values for the circuit is as follows : \n", "R1 = 2.00 kohm\n", "R2 = 5.00 kohm\n", "R3 = 1.43 kohm\n", "Rcl = 14.00 ohm\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 9.7 : page 390" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "# IC 723\n", "Id=1 #in mA\n", "Vsense=0.7 #in volts\n", "Vo=15 #in volts\n", "Im=50 #in mA\n", "Vr=7 #in volts\n", "R1=(Vo-Vr)/(Id*10**-3) \n", "R2=Vr/(Id*10**-3) \n", "R3=(R1*R2)/(R1+R2) \n", "Rcl=Vsense/(Im*10**-3) \n", "print \"various resistance values for the circuit is as follows : \"\n", "print \"R1 = %0.2f kohm\"%(R1/1e3)\n", "print \"R2 = %0.2f kohm\"%(R2/1e3)\n", "print \"R3 = %0.2f kohm\"%(R3/1e3)\n", "print \"Rcl = %0.2f ohm\"%Rcl" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "various resistance values for the circuit is as follows : \n", "R1 = 8.00 kohm\n", "R2 = 7.00 kohm\n", "R3 = 3.73 kohm\n", "Rcl = 14.00 ohm\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 9.8 : page 390" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "Im=100 #in mA\n", "Vr=7 #in volts\n", "R2=10 #in kohm\n", "Vsense=0.7 #in volts\n", "#using equation Vo=((R1+R2)/R2)*Vr\n", "#for Vo=10 volts assuming R2=10kohm\n", "Vo=10 #in volts\n", "R1=((Vo*R2)/Vr)-R2#it gives 3R2=7R1 \n", "print \"Part(i) : \"\n", "print \"Value of resistance R1 = %0.2F kohms \"%R1\n", "#now let output voltage is 15 volts\n", "Vo=15 #in volts\n", "R1=((Vo*R2)/Vr)-R2#it gives 3R2=7R1 \n", "print \"Part(ii) : \"\n", "print \"Value of resistance R1 = %0.2f kohms\"%R1\n", "R3=(R1*R2)/(R1+R2) \n", "print \"value of resistance R3 = %0.2f kohms\"%R3\n", "Rcl=Vsense/(Im*10**-3) #in ohms\n", "print \"Value of Rcl = %0.2f ohms\" %Rcl" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part(i) : \n", "Value of resistance R1 = 4.29 kohms \n", "Part(ii) : \n", "Value of resistance R1 = 11.43 kohms\n", "value of resistance R3 = 5.33 kohms\n", "Value of Rcl = 7.00 ohms\n" ] } ], "prompt_number": 29 } ], "metadata": {} } ] }