{ "metadata": { "name": "", "signature": "sha256:78d18a14b78f673f5bd74601b5a29612b95caf61b293886366daec703c0960a4" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter-8 Non-Linear Circuits" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.2 - Page 258" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from numpy import pi\n", "# Given data \n", "R1= 5 # in k\u03a9\n", "R2= 10.0 # in k\u03a9\n", "V_peak= R1*R2/(R1+R2) # in V\n", "Vav= V_peak/pi # in V\n", "print \"Peak value of V1 = %0.2f V\" %V_peak\n", "print \"Average value of Vo = %0.2f V\" %Vav" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Peak value of V1 = 3.33 V\n", "Average value of Vo = 1.06 V\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.7 - Page 268" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "from math import exp\n", "# Given data \n", "t= 0 \n", "Vc= 0 # in volts\n", "Vo= 5 # in volts\n", "R= 10 # in 2 \u03a9 (assume)\n", "RC= 1 # (assume)\n", "R3= 2*R # in \u03a9\n", "R2= 3*R # in \u03a9\n", "# From equation : T= 2*Rf*C*log[1+2*R3/R2]\n", "T= 2*RC*math.log(1+2*R3/R2) \n", "Vc_t= 2 # in volts\n", "t= T/2 \n", "#Voltage across capacitor,\n", "# Vc_t= Vco*[1-%e**(-t/ReqC)]= 1/5*(VR+4*Vo)*[1-%e**(-t/4*RC/5)]\n", "VR= Vc_t*5/(1-exp((-t/(4*RC/5))))-4*Vo \n", "print \"The value of VR = %0.2f volts\" %VR" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of VR = -4.69 volts\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.9 - Page 270" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "# Given data\n", "# Part (c)\n", "R1= 150 # in \u03a9\n", "R2= 68*10**3 # in \u03a9\n", "Vin= 50*10**-3 # in V\n", "Vsat= 14 # in V\n", "Vpositive= Vsat*(R1/(R1+R2)) # in V\n", "V_UT= Vpositive # in V\n", "Vpositive= -Vsat*(R1/(R1+R2)) # in V\n", "V_LT= Vpositive # in V\n", "print \"The value of V_UT = %0.4f V\" %V_UT\n", "print \"The value of V_LT = %0.4f V\" %V_LT" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of V_UT = 0.0308 V\n", "The value of V_LT = -0.0308 V\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.10 - Page 271" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data \n", "V_UT= 5 # in V\n", "V_LT= -5 # in V\n", "# Hysteresis voltage,\n", "Vhy= V_UT-V_LT # in V\n", "print \"The hysteresis voltage = %0.f V\" %Vhy" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The hysteresis voltage = 10 V\n" ] } ], "prompt_number": 4 } ], "metadata": {} } ] }