{ "metadata": { "name": "", "signature": "sha256:61d9db5db58e478b9fe9a5d30d29d7e25c81e0f55f4212cd024ae335f00db037" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 1- Differential Amplifiers" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.1 - Page 11" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "VCC= 9;#in V\n", "VEE= -9;# in V\n", "RC= 3.9;#in k\u03a9\n", "RE= 3.3;# in k\u03a9\n", "VBE= 0.7;# in V\n", "IE= (abs(VEE)-VBE)/(2*RE);# emitter current in mA\n", "IC= IE;# collector current in mA\n", "# Collector voltage,\n", "VC= VCC-IC*RC;# in V\n", "print \"The collector voltage = %0.3f volts\" %VC \n", "# Emitter voltage,\n", "VE= 0-VBE;# in V\n", "print \"The emitter voltage = %0.1f volts\" %VE\n", "# Collecctor-emitter voltage,\n", "VCE= VC-VE;# in V\n", "print \"The collector-emitter voltage = %0.3f volts\" %VCE\n", "\n", "# Note : There is some difference between coding output and the answer of the book \n", "# because in the book the value of IE is used as 1.25mA while the calculated value of IE is 1.258" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The collector voltage = 4.095 volts\n", "The emitter voltage = -0.7 volts\n", "The collector-emitter voltage = 4.795 volts\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.2 - Page 12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "VCC= 10;#in V\n", "VEE= -10;# in V\n", "RC= 10;#in k\u03a9\n", "RE= 9.3;# in k\u03a9\n", "VBE= 0.7;# in V\n", "IE= (abs(VEE)-VBE)/(2*RE);# emitter current in mA\n", "ICQ= IE;#quiescent collector current in mA\n", "print \"The quiescent collector current = %0.1f mA\" %ICQ\n", "# Quiescent Collector-emitter voltage,\n", "VCEQ= VCC+VBE-ICQ*RC;# in V\n", "print \"The quiescent collector-emitter voltage = %0.1f volts\" %VCEQ" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The quiescent collector current = 0.5 mA\n", "The quiescent collector-emitter voltage = 5.7 volts\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.3 - Page 12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "# Given data\n", "VCC= 12;#in V\n", "VEE= -12;# in V\n", "RC= 10;#in k\u03a9\n", "RE= 10;# in k\u03a9\n", "RB= 20;# in k\u03a9\n", "VBE= 0.7;# in V\n", "# Part (a)\n", "beta_dc= 75;\n", "# Tail current, IT= 2*IE= VEE/RE (ignoring VBE), hence\n", "IT= abs(VEE)/RE;# in mA\n", "IC= IT/2;#collector current in mA\n", "# output voltage,\n", "Vout1= VCC-(IC*RC);# in V\n", "IT= (abs(VEE)-VBE)/RE;# tail current in mA (on considering VBE)\n", "IC= IT/2;#collector current in mA\n", "Vout2= VCC-IC*RC;# in V\n", "# Tail current,\n", "IT= (abs(VEE)-VBE)/(RE+RB/(2*beta_dc));# in mA\n", "IC= IT/2;#collector current in mA\n", "# output voltage,\n", "Vout3= VCC-IC*RC;# in V\n", "print \"Part (a) : There are three different values of output voltage \"\n", "print \"%0.f V\" %Vout1\n", "print \"%0.2f V\" %Vout2\n", "print \"%0.3f V\" %Vout3\n", "\n", "# Part (b)\n", "IT= abs(VEE)/RE;# in mA\n", "IC= IT/2;#collector current in mA\n", "IB= IC/(beta_dc);# base current in mA\n", "IB= IB*10**3;# in \u00b5A\n", "VB= -IB*RB;#base voltage in mV\n", "VB= VB*10**-3;# in V\n", "print \"\\nPart (b) : \"\n", "print \"The value of base current = %0.f \u00b5A\" %IB\n", "print \"The value of base voltage = %0.2f V\" %VB\n", "\n", "# Part (c)\n", "beta_dc1= 60;\n", "beta_dc2= 80;\n", "IB1= IC/beta_dc1;#base current for transistor Q1, in mA\n", "IB1= IB1*10**3;# in \u00b5A\n", "print \"\\nPart (c)\"\n", "print \"The value of base current for transistor Q1 = %0.f \u00b5A \" %IB1\n", "VB1= -IB1*RB;# in mV\n", "VB1= VB1*10**-3;# in V\n", "print \"The value of base voltage for transistor Q1 = %0.1f V\" %VB1\n", "IB2= IC/beta_dc2;#base current for transistor Q2, in mA\n", "IB2= IB2*10**3;# in \u00b5A\n", "print \"The value of base current for transistor Q2 = %0.1f \u00b5A\" %IB2\n", "VB2= -IB2*RB;# in mV\n", "VB2= VB2*10**-3;# in V\n", "print \"The value of base voltage for transistor Q2 = %0.2f V\" %VB2\n", "\n", "# Note : In the part (c), the unit of base current for transistor Q2 in the book is wrong it will be \u00b5A\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part (a) : There are three different values of output voltage \n", "6 V\n", "6.35 V\n", "6.424 V\n", "\n", "Part (b) : \n", "The value of base current = 8 \u00b5A\n", "The value of base voltage = -0.16 V\n", "\n", "Part (c)\n", "The value of base current for transistor Q1 = 10 \u00b5A \n", "The value of base voltage for transistor Q1 = -0.2 V\n", "The value of base current for transistor Q2 = 7.5 \u00b5A\n", "The value of base voltage for transistor Q2 = -0.15 V\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.4 - Page 13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "RC= 2.2;#in k\u03a9\n", "RE= 4.7;# in k\u03a9\n", "RE= RE*10**3;# in \u03a9\n", "Ri1= 50;# in \u03a9\n", "Ri2= 50;# in \u03a9\n", "VCC= 10;#in V\n", "VEE= 10;# in V\n", "VBE= 0.7;# in V\n", "beta_dc= 100;\n", "beta_ac= 100;\n", "\n", "# Part (a)\n", "# Formula Used : ICQ= IE= (VEE-VBE)/(2*RE+Ri/beta_dc)\n", "ICQ= (VEE-VBE)/(2*RE+Ri1/beta_dc);#quiescent collector current in A\n", "ICQ= ICQ*10**3;# in mA\n", "IE= ICQ;# in mA\n", "print \"Part (a)\"\n", "print \"The value of ICQ = %0.4f mA\" %ICQ\n", "# Quiescent collector-emitter voltage,\n", "VCEQ= VCC+VBE-ICQ*RC;# in V\n", "print \"The value of VCEQ = %0.4f V\" %VCEQ\n", "\n", "# Part (b)\n", "re_desh= 26/IE;# AC emitter resistance in \u03a9\n", "# Formula Used : Ad= Vout/Vind= RC/re_desh\n", "Ad= RC*10**3/re_desh;# voltage gain\n", "print \"Part (b)\"\n", "print \"The voltage gain = %0.2f \" %Ad\n", "\n", "# Part (c)\n", "Rin1= 2*beta_ac*re_desh;# input resistance in \u03a9\n", "Rin1= Rin1*10**-3;#in k\u03a9\n", "Rin2= Rin1;# in k\u03a9\n", "print \"Part (c)\"\n", "print \"The input resistance = %0.3f k\u03a9\" %Rin1\n", "\n", "# Part (d)\n", "Rout1= RC;# in k\u03a9\n", "print \"Part (d)\"\n", "print \"The output resistance = %0.1f k\u03a9\" %Rout1\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part (a)\n", "The value of ICQ = 0.9893 mA\n", "The value of VCEQ = 8.5235 V\n", "Part (b)\n", "The voltage gain = 83.71 \n", "Part (c)\n", "The input resistance = 5.256 k\u03a9\n", "Part (d)\n", "The output resistance = 2.2 k\u03a9\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.5 - Page 14" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "VCC= 15;#in V\n", "VEE= 15;# in V\n", "RC= 1;#in M\u03a9\n", "RE= RC;# in M\u03a9\n", "beta_ac= 100;\n", "VBE= 0.7;# in V\n", "IE= (VEE-VBE)/(2*RE);#emitter current in \u00b5A\n", "IC= IE;# in collector current in \u00b5A\n", "re_desh= 26/IE;# ac resistance of each emitter diode in k\u03a9\n", "Ad= RC*10**3/re_desh;# Voltage gain \n", "print \"The voltage gain = %0.f\" %Ad\n", "Zin= 2*beta_ac*re_desh;# input impedance in k\u03a9\n", "Zin= Zin*10**-3;# in M\u03a9\n", "print \"The input impedance = %0.4f M\u03a9\" %Zin\n", "Zout= RC;#output impedance in M\u03a9\n", "print \"The output impedance = %0.f M\u03a9\" %Zout\n", "Acm= (RC*10**3)/(2*RE*10**3+re_desh);# common-mode gain\n", "CMRR= Ad/Acm;# common-mode rejection ratio\n", "print \"The common-mode rejection ratio = %0.f \" %CMRR \n", "# When v_in is zero\n", "Vout= VCC- IC*RC;# in V\n", "print \"When v_in is zero then the total output voltage at the quiescent value = %0.2f V\" %Vout\n", "# When v_in= 1mV,\n", "v_in= 1*10**-3;# in V\n", "Vout= Ad*v_in;# in V\n", "print \"When v_in is -1mV then the ac output voltage = %0.3f V\" %Vout\n", "\n", "# Note : The value of CMRR in the book is wrong because the correct value of Acm is \"0.4991\" and \n", "# in the book it is taken as \"0.4225\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The voltage gain = 275\n", "The input impedance = 0.7273 M\u03a9\n", "The output impedance = 1 M\u03a9\n", "The common-mode rejection ratio = 551 \n", "When v_in is zero then the total output voltage at the quiescent value = 7.85 V\n", "When v_in is -1mV then the ac output voltage = 0.275 V\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.6 - Page 16" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "VEE= 5;# supply voltage in V\n", "RC= 2*10**3;# collector resistance in \u03a9\n", "RE= 4.3;# emitter resistance in k\u03a9\n", "VBE= 0.7;# in V\n", "VT= 26;# in mV\n", "IE= (VEE-VBE)/(2*RE);#emitter current in mA\n", "re_desh= VT/IE;#dynamic emitter resistance in \u03a9\n", "Ad= RC/(2*re_desh);# differential mode gain\n", "print \"The differential mode gain = %0.2f\" %Ad\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The differential mode gain = 19.23\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.7 - Page 17" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "VEE= 5;# supply voltage in V\n", "RC= 2*10**3;# collector resistance in \u03a9\n", "RE= 4.3;# emitter resistance in k\u03a9\n", "VBE= 0.7;# in V\n", "VT= 26;# in mV\n", "IE= (VEE-VBE)/(2*RE);#emitter current in mA\n", "re_desh= VT/IE;#dynamic emitter resistance in \u03a9\n", "Ad= RC/(2*re_desh);# differential mode gain\n", "Acm= RC/(2*RE*10**3+re_desh);# common mode gain\n", "print \"The common mode gain = %0.4f\" %Acm\n", "CMRR= Ad/Acm;# common mode rejection ratio\n", "print \"The CMRR = %0.1f\" %CMRR\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The common mode gain = 0.2312\n", "The CMRR = 83.2\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.8 - Page 19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "VEE= 9;#in V\n", "VCC= 9;#in V \n", "RC= 47*10**3;# collector resistance in \u03a9\n", "RE= 43*10**3;# emitter resistance in \u03a9\n", "vin1= 2.5*10**-3;# in V\n", "Ri1= 20*10**3;# in \u03a9\n", "Ri2= Ri1;# in \u03a9\n", "VBE= 0.7;# in V\n", "VT= 26*10**-3;# in V\n", "beta1= 75;\n", "beta2= 75;\n", "IE= (VEE-VBE)/(2*RE+Ri1/beta1);#emitter current in A\n", "ICQ= IE;# quiescent current in A\n", "VCEQ= VCC+VBE-ICQ*RC;# quiescent collector voltage in V\n", "re_desh= VT/IE;#AC emitter resistance in \u03a9\n", "Ad= RC/re_desh;# voltage gain\n", "vout= Ad*vin1;# output voltage in V\n", "print \"The output voltage = %0.3f V\" %vout" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The output voltage = 0.435 V\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.9 - Page 20" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "RC= 2.2;#in k\u03a9\n", "RE= 4.7;# in k\u03a9\n", "Ri1= 50*10**-3;# in k\u03a9\n", "Ri2= 50*10**-3;# in k\u03a9\n", "VCC= 10;#in V\n", "VEE= 10;# in V\n", "VBE= 0.7;# in V\n", "beta_dc= 100;\n", "beta_ac= 100;\n", "\n", "# Part (i)\n", "# Formula Used : ICQ= IE= (VEE-VBE)/(2*RE+Ri/beta_dc)\n", "ICQ= (VEE-VBE)/(2*RE+Ri1/beta_dc);#quiescent collector current in mA\n", "IE= ICQ;# in mA\n", "print \"Part (i) : Dual-input, unbalanced output\"\n", "print \"The value of ICQ = %0.4f mA\" %ICQ\n", "# Quiescent collector-emitter voltage,\n", "VCEQ= VCC+VBE-ICQ*RC;# in V\n", "print \"The value of VCEQ = %0.4f V\" %VCEQ\n", "re_desh= 26/IE;# AC emitter resistance in \u03a9\n", "Rin1= 2*beta_ac*re_desh;# input resistance in \u03a9\n", "Rin1= Rin1*10**-3;#in k\u03a9\n", "Rin2= Rin1;# in k\u03a9\n", "print \"The value of Rin1 = %0.3f k\u03a9 \" %Rin1\n", "print \"The value of Rin2 = %0.3f k\u03a9 \" %Rin1\n", "Rout= RC;# in k\u03a9\n", "print \"The value of Rout = %0.1f k\u03a9\" %Rout \n", "print \"The value of RC = %0.1f k\u03a9\" %RC\n", "# Formula Used : Ad= Vout/Vind= RC/re_desh\n", "Ad= RC*10**3/(re_desh*2);# voltage gain of dual input, unbalanced output\n", "print \"The value of Ad = %0.3f \" %Ad\n", "\n", "# Part (ii)\n", "print \"\\nPart (ii) : Single-output, balanced output\"\n", "print \"The value of ICQ = %0.4f mA\" %ICQ\n", "print \"The value of VCEQ = %0.4f V\" %VCEQ\n", "print \"The value of Rin = %0.3f k\u03a9\" %Rin1\n", "print \"The value of Rout1 = %0.1f k\u03a9\" %Rout\n", "print \"The value of Rout2 = %0.1f k\u03a9\" %Rout\n", "# Formula Used : Ad= Vout/Vind= RC/re_desh\n", "Ad= RC*10**3/(re_desh);# voltage gain of dual input, unbalanced output\n", "print \"The value of Ad = %0.2f\" %Ad\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part (i) : Dual-input, unbalanced output\n", "The value of ICQ = 0.9893 mA\n", "The value of VCEQ = 8.5235 V\n", "The value of Rin1 = 5.256 k\u03a9 \n", "The value of Rin2 = 5.256 k\u03a9 \n", "The value of Rout = 2.2 k\u03a9\n", "The value of RC = 2.2 k\u03a9\n", "The value of Ad = 41.855 \n", "\n", "Part (ii) : Single-output, balanced output\n", "The value of ICQ = 0.9893 mA\n", "The value of VCEQ = 8.5235 V\n", "The value of Rin = 5.256 k\u03a9\n", "The value of Rout1 = 2.2 k\u03a9\n", "The value of Rout2 = 2.2 k\u03a9\n", "The value of Ad = 83.71\n" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.10 - Page 22" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "VEE= 9;#in V\n", "VCC= 9;#in V \n", "RC= 47*10**3;# collector resistance in \u03a9\n", "RE= 43*10**3;# emitter resistance in \u03a9\n", "vin1= 2.5*10**-3;# in V\n", "Ri1= 20*10**3;# in \u03a9\n", "Ri2= Ri1;# in \u03a9\n", "VBE= 0.7;# in V\n", "VT= 26*10**-3;# in V\n", "beta1= 75;\n", "beta2= 75;\n", "IE= (VEE-VBE)/(2*RE+Ri1/beta1);#emitter current in A\n", "ICQ= IE;# quiescent current in A\n", "VCEQ= VCC+VBE-ICQ*RC;# quiescent collector voltage in V\n", "re_desh= VT/IE;#AC emitter resistance in \u03a9\n", "Ad= RC/(2*re_desh);# voltage gain\n", "vout= Ad*vin1;# output voltage in V\n", "print \"The output voltage = %0.3f V\" %vout" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The output voltage = 0.217 V\n" ] } ], "prompt_number": 38 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.11 - Page 26" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "VEE= 15 #in V\n", "VD1= 0.7 # in V\n", "VD2= 0.7 # in V\n", "VBE= 0.7 # in V\n", "Beta= 100 \n", "VT= 26 # in mV\n", "R3= 180 #in \u03a9\n", "RC= 470 # in \u03a9\n", "VB3= -VEE+VD1+VD2 #in V\n", "VE3= VB3-VBE #voltage at emitter terminal of transistor Q3 in V\n", "IE3= (VE3-(-VEE))/R3 #emitter current through transistor Q3 in A\n", "\n", "#Part (i) \n", "ICQ= IE3/2 #quiescent current in A\n", "ICQ= round(ICQ*10**3) #in mA\n", "IE= ICQ #emitter current in mA\n", "print \"Part (i) : Quiescent current = %0.f mA \" %ICQ\n", "VCEQ= VEE+VBE-ICQ*10**-3*RC #quiescent collector-emitter voltage in V\n", "print \"The quiescent collector-emitter voltage = %0.2f V\" %VCEQ\n", "re_desh= VT/IE #AC emitter resistance in \u03a9\n", "\n", "# Part (ii)\n", "Ad= RC/re_desh # differential voltage gain\n", "print \"Part (ii) : Differential voltage gain = %0.2f \" %Ad\n", "\n", "# Part (iii)\n", "Rin1= 2*Beta*re_desh # in \u03a9\n", "Rin1= Rin1*10**-3 # in k\u03a9\n", "print \"Part (iii) : The input resistance = %0.1f k\u03a9\" %Rin1" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part (i) : Quiescent current = 2 mA \n", "The quiescent collector-emitter voltage = 14.76 V\n", "Part (ii) : Differential voltage gain = 36.15 \n", "Part (iii) : The input resistance = 2.6 k\u03a9\n" ] } ], "prompt_number": 41 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.12 - Page 27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "VEE= 10 #in V\n", "VCC=10 # in V\n", "VD1= 0.715 # in V\n", "Vz= 6.2# in V\n", "VBE= VD1 # in V\n", "Izt= 41 # in mA\n", "R3= 2.7 # in k\u03a9\n", "RC= 4.7 # in k\u03a9\n", "VT= 26 # in mV\n", "beta_ac= 100 \n", "beta_dc= 100 \n", "VB3= -VEE+Vz+VD1 #voltage at the base of transistor Q3 in V\n", "VE3= VB3-VBE # voltage at the emitter of transistor Q3 in V\n", "IE3= (VE3-(-VEE))/R3 #emitter current through transistor Q3 in mA\n", "ICQ= IE3/2 #quiescent current in mA\n", "VCEQ= VCC+VBE-ICQ*RC # in V\n", "print \"Part (c) : The Q-point values : \" \n", "print \"The value of ICQ = %0.3f mA\" %ICQ\n", "print \"The value of VCEQ = %0.2f V\" %VCEQ\n", "re_desh= VT/ICQ #dynamic emitter resistance in \u03a9\n", "Ad= RC*10**3/re_desh # voltage gain\n", "print \"Part (a) : The voltage gain = %0.1f\" %Ad\n", "Rin= 2*beta_ac*re_desh # differential input resistance in \u03a9\n", "Rin=Rin*10**-3 # in k\u03a9\n", "print \"Part (b) : The differential input resistance = %0.2f k\u03a9\" %Rin" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part (c) : The Q-point values : \n", "The value of ICQ = 1.148 mA\n", "The value of VCEQ = 5.32 V\n", "Part (a) : The voltage gain = 207.5\n", "Part (b) : The differential input resistance = 4.53 k\u03a9\n" ] } ], "prompt_number": 44 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.13 - Page 31" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "VCC= 12 # in V\n", "VBE= 0.7 # in V\n", "R1= 25 # in k\u03a9\n", "# I= I_REF= (VCC-VBE)/R1\n", "I= (VCC-VBE)/R1 # mirrored current in mA\n", "print \"The mirrored current = %0.3f mA\" %I" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mirrored current = 0.452 mA\n" ] } ], "prompt_number": 45 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.14 - Page 31" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "VCC= 10 # in V\n", "VBE= 0.7 # in V\n", "R1= 15 # in k\u03a9\n", "Beta= 100 \n", "I_REF= (VCC-VBE)/R1 #reference current in mA\n", "print \"The reference current = %0.2f mA\" %I_REF\n", "Iout= I_REF*Beta/(Beta+2) # output current in mA\n", "print \"The output current = %0.3f mA\" %Iout" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The reference current = 0.62 mA\n", "The output current = 0.608 mA\n" ] } ], "prompt_number": 46 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.15 - Page 32" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "VCC= 15 # in V\n", "VBE= 0.7 # in V\n", "R1= 2.2 # in k\u03a9\n", "Beta= 220 \n", "I_REF= (VCC-VBE)/R1 #reference current in mA\n", "# Formula : I= IC= I_REF*(Beta/(Beta+2))\n", "IC= I_REF*Beta/(Beta+2) # in mA\n", "print \"The value of current = %0.2f mA\" %IC" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of current = 6.44 mA\n" ] } ], "prompt_number": 48 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.16 - Page 32" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "Vz= 1.8 # in V\n", "VBE= 0.7 # in V\n", "RE= 1 # in k\u03a9\n", "Beta= 180 \n", "VB= Vz-VBE # in V\n", "IE= VB/RE #emitter current in mA\n", "# Formula : I= IC= IE*(Beta/(Beta+1))\n", "IC= IE*Beta/(Beta+1) # in mA\n", "print \"The value of current = %0.3f mA\" %IC" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of current = 1.094 mA\n" ] } ], "prompt_number": 49 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.17 - Page 33" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "VCC= 9 # in V\n", "R1= 12 # in k\u03a9\n", "VBE= 0.7 # in V\n", "Beta= 100 \n", "I_REF= (VCC-2*VBE)/R1 #reference current in mA\n", "print \"The reference current = %0.4f mA\" %I_REF\n", "Iout= I_REF/(1+2/(Beta*(1+Beta))) #output current in mA\n", "print \"The output current = %0.4f mA\" %Iout\n", "IC2= Iout #collector current in mA\n", "print \"The collector current = %0.4f mA\" %IC2\n", "# IB3= I_REF-IC1= I_REF-IC2 (since IC1= IC2)\n", "IB3= I_REF-IC2 #base current of transistor Q3 in mA\n", "IB3= IB3*10**3 # in \u00b5A\n", "print \"The base current of transistor Q3 = %0.1f \u00b5A\" %IB3\n", "IB3= 0.1 # in \u00b5A\n", "IE3= (1+Beta)*IB3 # emitter current of transistor Q3 in \u00b5A\n", "print \"The emitter current of transistor Q3 = %0.1f \u00b5A\" %IE3\n", "IB1= IE3/2 #base current in \u00b5A\n", "IB2= IB1 # in \u00b5A\n", "print \"The base current = %0.2f \u00b5A\" %IB1" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The reference current = 0.6333 mA\n", "The output current = 0.6332 mA\n", "The collector current = 0.6332 mA\n", "The base current of transistor Q3 = 0.1 \u00b5A\n", "The emitter current of transistor Q3 = 10.1 \u00b5A\n", "The base current = 5.05 \u00b5A\n" ] } ], "prompt_number": 50 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.18 - Page 33" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "VEE= 10 # in V\n", "VBE= 0.715 # in V\n", "beta_ac= 100 \n", "beta_dc= 100 \n", "R= 5.6 # in k\u03a9\n", "I_REF= (VEE-VBE)/R # in mA\n", "IC1= I_REF*beta_ac/(2+beta_ac) # in mA\n", "# IC1= IC2= IC3 (by symmetry)\n", "IC2= IC1 # in mA\n", "IC3= IC2 # in mA\n", "I_RC= IC1+IC2+IC3 # current through RC in mA\n", "print \"The current through RC = %0.2f mA\" %I_RC" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The current through RC = 4.88 mA\n" ] } ], "prompt_number": 51 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.19 - Page 34" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "VCC= 5 # in V\n", "VBE= 0.7 # in V\n", "VEE= -5 # in V\n", "VT= 26 # in mV\n", "R= 18.6 # in k\u03a9\n", "Beta= 100 \n", "I2= (VCC-VBE-VEE)/R # in mA\n", "IC3= I2 # in mA (due to current mirror action)\n", "IE= IC3/2 # emitter current of transistor Q1 and Q2\n", "re_desh= VT/IE #AC emitter resistance of transistor in \u03a9\n", "Rin1= 2*Beta*re_desh # in \u03a9\n", "Rin1= Rin1*10**-3 # in k\u03a9\n", "print \"The differential input resistance = %0.1f k\u03a9\" %Rin1" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The differential input resistance = 20.8 k\u03a9\n" ] } ], "prompt_number": 52 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.20 - Page 42" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "VCC= 18 # in V\n", "R1= 4.7 # in k\u03a9\n", "R2= 5.6 # in k\u03a9\n", "R3= 6.8 # in k\u03a9\n", "RE= 1.1 # in k\u03a9\n", "VBE= 0.7 # in V\n", "VT= 26 # in mV\n", "RC= 1.8*10**3 # in \u03a9\n", "IE1= (VCC*R1/(R1+R2+R3)-VBE)/RE # in mA\n", "re_desh= VT/IE1 #dynamic resistance of each transistor in \u03a9\n", "Av= -RC/re_desh # voltage gain of the cascode amplifier\n", "print \"The voltage gain of the cascode amplifier = %0.1f\" %Av" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The voltage gain of the cascode amplifier = -267.3\n" ] } ], "prompt_number": 55 } ], "metadata": {} } ] }