{ "metadata": { "name": "", "signature": "sha256:806c344ebbd66dd7398f87b7be85af8355708b04b28f0bd902647a641248feff" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 25: Laminated Composite Structures" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 25.1 Pg.No.653" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", "\n", "#variable declaration\n", "Ee=5000 #youngs modulus of epoxy (N/mm^2)\n", "Ec=200000 #youngs modulus of carbon (N/mm^2)\n", "\n", "# E1=Ef*Af/A+Em+Am/A equation 25.4\n", "A=50*80 #total area (mm^2)\n", "Ae=40*80 #area of epoxy (mm^2)\n", "Ac=10*80 #area of carbon(mm^2)\n", "L=500 #length of bar(mm)\n", "vc=0.3 #poisson ratio\n", "ve=0.2\n", "\n", "#effective youngs modulus\n", "E1=(Ee*Ae+Ec*Ac)/A\n", "\n", "load=100*10**3\n", "sigma1=load/A\n", "epsilon1=sigma1/E1\n", "\n", "delta1=epsilon1*L\n", "v1t=(ve*Ae+vc*Ac)/A\n", "epsilon_t=-v1t*epsilon1\n", "\n", "thickness=L\n", "delta_t=-epsilon_t*(thickness)\n", "\n", "\n", "sigma_m=Ee*epsilon1\n", "sigma_f=Ec*epsilon1\n", "print \"stresses in epoxy = %2.2f N/mm^2\\n\"%(sigma_m)\n", "print \"stresses in carbon = %2.2f N/mm^2\\n\"%(sigma_f)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "stresses in epoxy = 2.84 N/mm^2\n", "\n", "stresses in carbon = 113.64 N/mm^2\n", "\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 25.2 Pg.No.657" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", "\n", "tau=40 #shear stress(N/mm^2)\n", "G=5000 #shear modulus(N/mm^2)\n", "v1t=0.3 #poisson ratio \n", "Et=80000 #youngs modulus in transverse direction(N/mm^2)\n", "E1=120000 #youngs modulus in longitudinal direction(N/mm^2)\n", "sigma_x=50 #direction stress in x direciton\n", "sigma_y=25 #in y direction\n", "\n", "\n", "vt1=v1t*Et/E1 #minor poisson ratio\n", "\n", "epsilon1=sigma_x/E1-vt1*sigma_y/Et\n", "epsilont=sigma_y/Et-v1t*sigma_x/E1\n", "print \"direct strain in x direction = %2.2e \\n\"%(epsilon1)\n", "print \"direct strain in y direction = %2.2e \\n\"%(epsilont)\n", "\n", "gama1t=tau/G\n", "print \"shear strain in the ply = %2.2e \\n\"%(gama1t)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "direct strain in x direction = 3.54e-04 \n", "\n", "direct strain in y direction = 1.88e-04 \n", "\n", "shear strain in the ply = 8.00e-03 \n", "\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 25.3 Pg.No.661" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", "import numpy as np\n", "\n", "El=150000 #youngs modulus(N/mm^2)\n", "Et=90000 #youngs modulus(N/mm^2)\n", "Glt=5000 #shear modulus(N/mm^2)\n", "vlt=0.3 #poisson ratio\n", "theta=45 #longitudinal plane inclination\n", "\n", "s11=1/El\n", "s22=1/Et\n", "s12=-vlt/El\n", "s33=1/Glt\n", "\n", "a=np.array([[53.45,-46.55,1],[-46.55,53.45,0],[-2.2,-2.2,0]])\n", "b=np.array([60,40,0])\n", "x=np.dot(a,b)\n", "print \"strain in the x direction = %4.4e\\n\"%(x[0]*10**-6)\n", "print \"strain in the y direction = %4.4e\\n\"%(x[1]*10**-6)\n", "print \"shear strain in the xy plane = %4.4e\\n\"%(x[2]*10**-6)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "strain in the x direction = 1.3450e-03\n", "\n", "strain in the y direction = -6.5500e-04\n", "\n", "shear strain in the xy plane = -2.2000e-04\n", "\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 25.4 Pg.No.664" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", "import numpy as np\n", "\n", "l1=150\n", "t1=1\n", "l2=100 #dimensions shown in Fig 25.10 (mm)\n", "t2=2\n", "Ef=60000 #youngs modulus of flanges(N/mm^2)\n", "Ew=20000 #youngs modulus of web(N/mm^2)\n", "P=40*10**3 #axial load(N)\n", "\n", "#sum of b*t*E \n", "sum_btE=2*l2*t2*Ef+l1*t1*Ew\n", "\n", "epsilon_z=P/sum_btE #equ 25.37\n", "P_flange=epsilon_z*l2*t2*Ef\n", "P_web=epsilon_z*l1*t1*Ew\n", "print \"axial load in flange = %2.2f kN\\n\"%(P_flange/1000)\n", "print \"axial load in web = %2.2f kN\\n\"%(P_web/1000)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "axial load in flange = 17.78 kN\n", "\n", "axial load in web = 4.44 kN\n", "\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 25.5 Pg.No.666" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", "import numpy as np\n", "\n", "l1=100\n", "l2=50\n", "t1=1 #dimension shown in Fig 25.11 (mm)\n", "t2=2\n", "Ef=50000 #youngs modulus of flange(N/mm^2)\n", "Ew=15000 #youngs modulus of web(N/mm^2)\n", "Mx=10**6 #bending moment (N.mm)\n", "My=0\n", "\n", "Ixx=2*Ef*l2*t2*l2**2+Ew*t1*l1**3/12\n", "Iyy=Ef*t2*l1**3/12\n", "Ixy=Ef*l2*t2*(50)*(50)+Ef*l2*t2*(-50)*(-50)\n", "\n", "x=50\n", "y=50 #point 1\n", "Ez=50000\n", "\n", "sigma_z=Ez*((My*Ixx-Mx*Ixy)/(Ixx*Iyy-Ixy**2)*x + (Mx*Iyy-My*Ixy)/(Ixx*Iyy-Ixy**2)*y)\n", "print \"direct stress at point 1 = %3.1f N/mm^2\\n\"%(sigma_z)\n", "x=0\n", "y=50\n", "sigma_z=Ez*((My*Ixx-Mx*Ixy)/(Ixx*Iyy-Ixy**2)*x + (Mx*Iyy-My*Ixy)/(Ixx*Iyy-Ixy**2)*y)\n", "print \"direct stress at point 2 = %3.1f N/mm^2\\n\"%(sigma_z)\n", "\n", "x=0\n", "y=50\n", "Ez=15000\n", "sigma_z=Ez*((My*Ixx-Mx*Ixy)/(Ixx*Iyy-Ixy**2)*x + (Mx*Iyy-My*Ixy)/(Ixx*Iyy-Ixy**2)*y)\n", "print \"direct stress at point 2 in the web = %3.1f N/mm^2\\n\"%(sigma_z)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "direct stress at point 1 = 102.6 N/mm^2\n", "\n", "direct stress at point 2 = -51.3 N/mm^2\n", "\n", "direct stress at point 2 in the web = -15.4 N/mm^2\n", "\n" ] } ], "prompt_number": 39 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 25.6 Pg.No.668" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", "import numpy as np\n", "from sympy import symbols, integrate\n", "\n", "s=symbols('s')\n", "\n", "l12=250\n", "l23=300\n", "t31=t12=2 #dimensions shown in Fig 25.12 (mm)\n", "t23=1.5\n", "\n", "P=2*10**3 #shear load(N)\n", "E12=E31=45000 #youngs modulus of sides given in name(N/mm^2)\n", "E23=20000\n", "\n", "Ixx=2*E12*t12*l12**3*(l23/2/l12)**2/12+E23*t23*l23**3/12\n", "alpha=math.asin(l23/2/l12)\n", "\n", "Sx=0\n", "Sy=2*10**3\n", "q12=-E12*Sy/Ixx*integrate(-2*s,(s,0,250))*math.sin(alpha)\n", "print \"shear flow at point 2 in the flange 12 = %2.2f N/mm\\n\"%(q12)\n", "\n", "q23=-E23*Sy/Ixx*integrate(-225+1.5*s,(s,0,300))+22.2\n", "print \"shear flow at point 3 in the flange 23 = %2.2f N/mm\\n\"%(q23)\n", "q0=14.2\n", "\n", "q12=-E12*Sy/Ixx*integrate(-2*s,s)*math.sin(alpha)-q0\n", "print \"shear flow in the flange 12 and 31 \"\n", "print q12\n", "\n", "q23=-E23*Sy/Ixx*integrate(-225+1.5*s,s,)+22.2-q0\n", "print \"\\nshear flow in the web 23\"\n", "print q23" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "shear flow at point 2 in the flange 12 = 22.22 N/mm\n", "\n", "shear flow at point 3 in the flange 23 = 22.20 N/mm\n", "\n", "shear flow in the flange 12 and 31 \n", "0.000355555555555556*s**2 - 14.2\n", "\n", "shear flow in the web 23\n", "-0.000197530864197531*s**2 + 0.0592592592592593*s + 8.0\n" ] } ], "prompt_number": 57 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 25.7 Pg.No.671" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", "import numpy as np\n", "from sympy import symbols, integrate\n", "\n", "\n", "l1=200\n", "t1=2\n", "l2=100 #dimensions shown in Fig 25.13 (mm)\n", "t2=1\n", "T=10*10**6 #torque applied (N.mm)\n", "Gl=20000 #laminate shear modulus(N/mm^2)\n", "Gw=35000 #web shear modulus(N/mm^2)\n", "A=l1*l2\n", "\n", "q=T/2/A\n", "\n", "#from eqn 25.47\n", "int_ds_by_Gt=2*l1/Gl/t1+2*l2/Gw/t2\n", "\n", "#Let's say we want to calculate warping at point 1\n", "#warping at mid of web is zero (W0=0) integrate eqn 25.47 from\n", "#mid of web to point 1\n", "W0=0\n", "A0s=50*100\n", "W1=W0+q*(l2/2/Gw/t2-int_ds_by_Gt/A*A0s)\n", "print \"warping at point 1 is = %2.2f mm\\n\"%(W1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "warping at point 1 is = -0.63 mm\n", "\n" ] } ], "prompt_number": 66 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 25.8 Pg.No.673" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", "import numpy as np\n", "from sympy import symbols, integrate\n", "\n", "l1=50\n", "t1=2.5\n", "l2=25 #dimension shown in Fig 18.12(mm)\n", "t2=1.5\n", "\n", "Gl=20000\n", "Gw=15000 #shear modulus (N/mm^2)\n", "T=10*10**3 #torque applied (N.mm)\n", "AR=25*25/2\n", "GJ=2*Gl*l2*t2**3/3+Gw*l1*t1**3/3\n", "#eqn 25.49\n", "dO_dz=T/GJ\n", "\n", "t_max12=2*Gl*(t2/2)*dO_dz\n", "t_max23=2*Gw*(t1/2)*dO_dz\n", "print \"maximum shear stress in the web = %2.2f N/mm^2\\n\"%(t_max12)\n", "print \"maximum shear stress in the laminate = %2.2f N/mm^2\\n\"%(t_max23)\n", "\n", "W1=-2*AR*dO_dz\n", "print \"warping at point 1 = %2.2f mm\\n\"%(W1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "maximum shear stress in the web = 59.63 N/mm^2\n", "\n", "maximum shear stress in the laminate = 74.53 N/mm^2\n", "\n", "warping at point 1 = -1.24 mm\n", "\n" ] } ], "prompt_number": 74 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }