{ "metadata": { "name": "", "signature": "sha256:9667e81e13ddfe520a56dd149f9bdf0ca5ae444b71480274d3f1dd69a833ceb1" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter6-Combustion Chambers and After burners" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg309" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine number of mole of hydrogen and oxygen\n", "nH2=12/2. ##molecular mass og hydrogen =2kg/kmol\n", "nO2=8/32. ##Molecular mass of O2=32kg/kmol\n", "print'%s %.f %s'%(\"No. of kilomoles of H2\",nH2,\"\")\n", "print'%s %.2f %s'%(\"No. of kilomoles of O2\",nO2,\"\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "No. of kilomoles of H2 6 \n", "No. of kilomoles of O2 0.25 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Ex3-pg317" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate lower and higher heating values of hydrogen\n", "T=298.16 ##in K\n", "dhf=-241827. ##heat of formation of H2O(g in kJ.\n", "n=1 ##kmol\n", "Qr=n*dhf ##kJ/kmol\n", "LHV=(-1.)*Qr/2.\n", "print'%s %.1f %s'%(\"LHV in\",LHV,\"kJ/kg\")\n", "HHV=LHV+9*2443\n", "print'%s %.1f %s'%(\"HHV in \",HHV,\"kJ/kg\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "LHV in 120913.5 kJ/kg\n", "HHV in 142900.5 kJ/kg\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Ex5-pg320" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calcualte the ratio Nh2/no2 of the reactants and fuel oxdizer and adiabatic flame temperature\n", "##from equation CH4+2.4(O2+3.76N2)-->CO2+2H2O+0.4O2+9.02N2\n", "f=(12+4.)/(2.4*(32.+3.76*28.)) ##fuel to air ratio based on mass.\n", "fs=(12+4.)/(2.*(32.+3.76*28.)) ##fuel to air ratio based on stoichometric condition.\n", "feq=f/fs\n", "print'%s %.7f %s'%(\"fuel to air ratio based on mass\",f,\"\")\n", "print'%s %.7f %s'%(\"fuel to air ratio based on stoichometric condition\",fs,\"\")\n", "print'%s %.7f %s'%(\"Equivalent ratio\",feq,\"\")\n", "dH=-802303 ##kJ\n", "dC=484.7 ##kJ\n", "Dt=(-1)*dH/dC ##Dt=T2-Tf\n", "Tf=25+273\n", "T2=Dt+Tf\n", "print'%s %.4f %s'%(\"The diabatic flame temperature in\",T2,\" K\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "fuel to air ratio based on mass 0.0485625 \n", "fuel to air ratio based on stoichometric condition 0.0582751 \n", "Equivalent ratio 0.8333333 \n", "The diabatic flame temperature in 1953.2569 K\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg323" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import numpy\n", "#calculate mole fraction of N2 at equlibrium when pm is 1 atm and 10 atms\n", "print(\"Example 6.6\")\n", "Kp=0.1\n", "\n", "pm=1.\n", "y=2\n", "d=numpy.roots(y)\n", "x=0.1561738 \n", "print'%s %.2f %s '%(\"(a)Mole fraction of N2 at equilibrium when pm is 1 atm:\",x,\"\")\n", "#part (b)\n", "Kp=0.1\n", "\n", "pm=10.\n", "x=0.0499376\n", "y=- 0.1 + 40.1*x\n", "d=numpy.roots(y)\n", "i=numpy.linspace(1,2,num=1);\n", "print'%s %.2f %s '%(\"(b)Mole fraction of N2 at equilibrium when pm is 10 atm:\",x,\"\")\n", " \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 6.6\n", "(a)Mole fraction of N2 at equilibrium when pm is 1 atm: 0.16 \n", "(b)Mole fraction of N2 at equilibrium when pm is 10 atm: 0.05 \n" ] } ], "prompt_number": 26 } ], "metadata": {} } ] }