{
 "metadata": {
  "name": "",
  "signature": "sha256:c1126cb691475e60eebab6389ec54d5291c18d5b66ce5b3165984d185608eb50"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter5-Aircraft Engine INlets and Nozzles"
     ]
    },
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Ex1-pg251"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calcualte overspeed mach no\n",
      "print(\"Example 5.1\")\n",
      "Md=1.5\n",
      "##From isentropic table,\n",
      "gm=1.4 ##gamma\n",
      "A=1.176 ##A=A1/Ath=A1/Acr\n",
      "##for same A, from isentropic table for M<1\n",
      "My=0.61\n",
      "##for My=0.61, from normal shock table\n",
      "Mx=1.8\n",
      "Mos=Mx\n",
      "print'%s %.1f %s'%(\"Overspeed Mach no.\",Mos,\"\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 5.1\n",
        "Overspeed Mach no. 1.8 \n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex2-pg252"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate contractio ratio and the maximum pressure recovery\n",
      "print(\"Example 5.2\")\n",
      "Md=2.65\n",
      "Mx=Md\n",
      "##for Mx=2.65, from normal shock table \n",
      "My=0.4996\n",
      "M1=My\n",
      "##from isentropic table for M1=0.5, \n",
      "A=1.34\n",
      "##for Md=2.65, from isentropic table (A=A1/Acr)\n",
      "A1=3.036\n",
      "Af=A1/A\n",
      "##from isentropic table Af, \n",
      "Mth=2.35\n",
      "##for Mth=2.35, from normal shock table\n",
      "p=0.5615 ##p=pty/ptx\n",
      "print'%s %.2f %s'%(\"Maximum total pressure recovery:\",p,\"\")"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 5.2\n",
        "Maximum total pressure recovery: 0.56 \n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3-pg253"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate inlet design contraction ratio and throat mach no\n",
      "print(\"Example 5.3\")\n",
      "Md=3.3 ##from isentropioc  table \n",
      "A=5.629 ## A=A1/Acr=A1/Ath\n",
      "Mx=Md ##from normal shock table \n",
      "My=0.4596\n",
      "M1=My\n",
      "##from isentropic table \n",
      "A11=1.425\n",
      "pt=((1./A11-1./A)/(1./A))*100.\n",
      "Af=A/A11\n",
      "##for Af=3.95, from isentropic table for M>1\n",
      "M1th=2.95\n",
      "print'%s %.2f %s'%(\"Inlet design contraction ratio A1/Ath:\",A,\" \")\n",
      "print'%s %.2f %s'%(\"The % opening of the throat:\",pt,\" \")\n",
      "print'%s %.3f %s'%(\"Throat Mach no.:\",M1th,\"\")"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 5.3\n",
        "Inlet design contraction ratio A1/Ath: 5.63  \n",
        "The % opening of the throat: 295.02  \n",
        "Throat Mach no.: 2.950 \n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex4-pg256"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate inlet pressure recovery with the shock at the lip\n",
      "print(\"Example 5.4\")\n",
      "M0=1.4\n",
      "##from normal shock table \n",
      "p=0.9582 ##p=pt2/pt0\n",
      "M1=M0\n",
      "##from isentropic table:\n",
      "A=1.115 ##A=A1/Acr\n",
      "A11=1.1 ##A11=Ax/A1\n",
      "Af=A11*A\n",
      "##from normal shock table for M>1\n",
      "Mx=1.56\n",
      "##from normal table\n",
      "p1=0.91 ##p=pt2/pt0\n",
      "p2=p\n",
      "print'%s %.2f %s'%(\"(a)The best backpressure :\",p,\"\")\n",
      "print'%s %.3f %s'%(\"(b)The supercritical mode inlet total pressure recovery:\",p1,\"\")\n",
      "print'%s %.2f %s'%(\"(c)Inlet pressure recovery in subcritical mode with 10% spillage:\",p2,\"\")"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 5.4\n",
        "(a)The best backpressure : 0.96 \n",
        "(b)The supercritical mode inlet total pressure recovery: 0.910 \n",
        "(c)Inlet pressure recovery in subcritical mode with 10% spillage: 0.96 \n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Ex5-pg257"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate total pressure recovery of this inlet \n",
      "import math\n",
      "print(\"Example 5.5\")\n",
      "##th=theta and b=beta.\n",
      "gm=1.4 ##gamma\n",
      "##OBLIQUE SHOCK 1\n",
      "M0=2.\n",
      "th=8. ##degree\n",
      "##from theta-beta-M chart,\n",
      "b1=37. ##degree\n",
      "Mn1=M0*math.sin(b1/57.3)\n",
      "p1=0.993 ##p=pt2/pt1\n",
      "Mn2=((2.+(gm-1.)*Mn1**2.)/(2.*gm*Mn1**2.-(gm-1.)))**(1/2.)\n",
      "M2=Mn2/math.sin(b1-th/57.3)\n",
      "##OBLIQUE SHOCK 2\n",
      "M0=M2\n",
      "th=12.\n",
      "##from oblique shock chart,\n",
      "b2=48.7\n",
      "Mn1=M0*math.sin(b2/57.3)\n",
      "p2=0.978\n",
      "Mn2=((2.+(gm-1.)*Mn1**2)/(2.*gm*Mn1**2.-(gm-1.)))**(1/2.)\n",
      "M3=Mn2/math.sin(b1-th/57.3)\n",
      "##NORMAL SHOCK\n",
      "M0=M3\n",
      "b3=90.\n",
      "pNS=0.977\n",
      "\n",
      "Po=p1*p2*pNS\n",
      "print'%s %.3f %s'%(\"Total pressure recovery:\",Po,\"\")\n",
      "\n",
      "\n",
      "\n",
      "\n",
      "\n",
      "\n",
      "\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 5.5\n",
        "Total pressure recovery: 0.949 \n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex6-pg271"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate percent increase in gross thurst \n",
      "print(\"Example 5.6\")\n",
      "M9=1. ## Mach no.\n",
      "p=1/8. ##p=p0/pt7\n",
      "gm=1.3 ##gamma\n",
      "V9cd=(2.*(1.-p**((gm-1.)/gm)))**(1/2.)\n",
      "px=p*((gm+1.)/2.)**(gm/(gm-1.))\n",
      "V9c=(2.*(gm-1.)/(gm+1.))**(1/2.)\n",
      "FR=(V9cd/V9c)/(1.+(1.-px)/gm)\n",
      "pr=(FR-1.)*100./1.\n",
      "print'%s %.3f %s'%(\"% increase in gross thrust:\",pr,\" \")"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 5.6\n",
        "% increase in gross thrust: 7.304  \n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex7-pg273"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate velocites at various point and coefficent\n",
      "import math\n",
      "print(\"Example 5.7\")\n",
      "p98=0.95 ##p98=pt9/pt8\n",
      "p87=0.98 ##p98=pt8/pt7\n",
      "p70=8. ##p70=pt7/pt0\n",
      "p97=8. ##p97=pt9/pt7\n",
      "Cp=1243.7 ##specific heat in J/kg.K\n",
      "gm=1.3 ##gamma\n",
      "Tt9=900. ##Total temp. of the gas entering a C-D nozzle\n",
      "Tt7=Tt9\n",
      "p90=1. ##p90=p9/p0\n",
      "p99=p98*p87*p70*p90 ##p99=pt9/p9\n",
      "M9=(2./(gm-1.)*(p99**((gm-1.)/gm)-1.))**(1/2.) ##exit mach no.\n",
      "T9=Tt9/(1.+(gm-1.)*M9**2/2.) ##The nozzle exit static temp.\n",
      "a9=((gm-1.)*Cp*T9)**(1/2.) ##speed of sound in exit plane\n",
      "V9=a9*M9 ##exit velocity\n",
      "V9s=(2.*Cp*Tt7*(1.-p97**-((gm-1.)/gm)))**(1/2.)\n",
      "p89=p87*p70*p90 ##p89=pt8/p9\n",
      "V9i=(2.*Cp*Tt7*(1.-p89**-((gm-1.)/gm)))**(1/2.)\n",
      "Cv=V9/V9i\n",
      "print'%s %.1f %s'%(\"(a)V9 in\",V9,\" m/s:\")\n",
      "print'%s %.1f %s'%(\"(b)V9s in\",V9s,\" m/s:\")\n",
      "print'%s %.1f %s'%(\"(c)V9i in \",V9i,\"m/s:\")\n",
      "print'%s %.3f %s'%(\"(d)The velocity coefficient Cv:\",Cv,\"\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 5.7\n",
        "(a)V9 in 911.1  m/s:\n",
        "(b)V9s in 923.7  m/s:\n",
        "(c)V9i in  920.2 m/s:\n",
        "(d)The velocity coefficient Cv: 0.990 \n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex8-pg275"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "%matplotlib inline\n",
      "#plot the graphs\n",
      "print \"Example 5.8\"\n",
      "#calculate and graph the divergnece correction factor \n",
      "import math\n",
      "import numpy\n",
      "import matplotlib\n",
      "from matplotlib import pyplot\n",
      "alfa=0 #alfa=cone half angle\n",
      "dx=numpy.linspace(0,44,146)\n",
      "x=numpy.zeros(146)\n",
      "count=0;\n",
      "for alfa in dx:\n",
      "\tCa=(1+math.cos(alfa*math.pi/180.))/2.; #Flow angularity loss coefficient\n",
      "\tx[count]=Ca;\n",
      "\tcount=count+1;\n",
      "#disp(Ca,\"Divergence correction factor Ca:\")\n",
      "\n",
      "pyplot.plot(dx,x)\n",
      "\n",
      "pyplot.title(\"Flow convergence loss in a conical nozzle\")\n",
      "pyplot.xlabel(\"Cone half-angle\")\n",
      "pyplot.ylabel(\"Flow angularity loss coefficient\")"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 5.8\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "pyout",
       "prompt_number": 1,
       "text": [
        "<matplotlib.text.Text at 0x5989a50>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEZCAYAAABmTgnDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVNX9//HXmwVEmmJEECwYRWNBERUR26qo2DAaFbEQ\noyH4S2ypit9ENya2GLvGWNAo9gSNJSoqstglSK8KQgTsighiAfbz++OclXHc3Zktd+/M7uf5eMyD\nmVs/c3eYz5xz7jlHZoZzzjlXkxZpB+Ccc67webJwzjmXkycL55xzOXmycM45l5MnC+ecczl5snDO\nOZeTJ4sCIKmHpApJ/vcoYJLKJZ3WSOcaIenWxjhXEiTNkLRPPY9RJmlUQ8VUH5IWSjog7TjS1DLt\nAJoTSQuBjYA1cZEBW6cWkKsti4/kT2R2aWOcJylmtkNDHKYBjtFQGu1vX6j8l2zjMuBwM+sQHx3N\n7L20g0qbJP/R4qqitANwa3myKECSukl6VNLHkt6U9NO4vI2kLyRtEF//n6RVktrH13+SdHU1x9xA\n0h2Slkj6RNLDGeuGxfN8LOkRSRtnrKuQNFzSG5KWSrohLl9H0qeSts/YtrOklZI2jK8PlzQl7veS\npF4Z2y6U9DtJ04DlkkokDZX0P0kfSfp9ZtFfwXmS5sX1D0jqFNdVVuNV7v+hpPMzztVC0vlx388k\nTZS0SVz3A0nPxPc+R9Kxef6NlBHj+5LulNQx4+90d4xzqaQJkjaK606RND/G8ZakE6o5/jdVMLne\nXxX7HiZpsqRlkt6WdGGO93Jk/Dsti9fo4Li8ys9hRnwPxvf9mUK10y4Z6zP/diVVXP/ucd21McZl\ncfleeV7/UkmLJf0qXv93JJ2SsX49SXdJ+iDG8n+SFNdNlbQ841EhaV9JN2QtXyXpgirOXe1nsUkz\nM3800gNYABxQxfIeQAXQIr5+HrgBaA3sBHwA7BfXjQeOjs+fBt4EBmbsd2Q15/4PcB+wHqH6ce+4\nfH/gQ6B3PN91wPiM/SqAR4GOwKYxloPjupHAnzO2/QXwRHy+M/A+sBvhF+LQ+P5bxfULgUlAd2Ad\nYDtgOdAfaAVcAXwN7B+3Pxt4GegW1/8duDfr+t0cj7Uj8CWwTVz/W2Aa0DO+7gVsALQDFgE/Jvxw\n6h2vxbbVXMNxwKnx+anx2veIxxkN3BXXDY/XrE187zsDHeJ2yzLi6AJsV825LgRG5Xh/P6hm332B\n7TPe63s1fC76Ap8SP5fx+lZet5o+h2XAF8DA+B4vAV7J+qzvX9P1j89PBDrF6/8r4F2gdcY5RlUT\ndymwKm5TAhwCfA6sF9ffBTwcr/nmwNzKv13WcX4GzALaZy3vHd/vTlW8n2o/i035kXoAzelB+IJc\nDiyNj4fi8sovgxaEL+TVQLuM/S4B7ojPLwKujf9B3gXOBC4lfDGtBDpVcd6NCe0k61WxbiRwWcbr\ndoQv6c3i6wqgf8b6B4Bz4/MDgHkZ614CTorPbwIuyjrXHNYmqQXAKRnrLgDuyXi9LvBVxn/QWZXP\nM97T1/GaVV6/bhnrXwOOi8/nAkdU8d4HA89nLbsZuKCav19mshgLnJ6xbusYTwnwk3gtemXt3y7+\n3Y8G1s3xWSnju8ki+/0NzvNzdw1wVTXrbgaurGJ5rs9hGfB0xrrtgJUZrzO/XKu8/tXE80nldSN3\nslhJ/IEVl71PSH4l8bPzg4x1PwPGZR1jr7jPVlnLOxP+rx5Xzfup9rOYz3ss1odXQzUuI/zC6xQf\nR1exTTfgEzP7PGPZ24Rf4BBKFqVAH2A68Czhl+TuhC/upVUcc9N4zGVVrNsY+N83AYbzfpxxPgi/\nTCutBNrH5+VAW0l9JfUg/PqsrN7aHPh1rIZZKmkpsEl8f5UWZcWxOCOOL2IclXoAD2ccaxbhy6xL\nHnFuAsz/7ltnc2D3rBhPyDpmdb513Qh/o5aEGxhGAWOA+xWq/S6X1DJe28HA6cA7kh6XtE0e56ru\n/bWraiNJu0saF6tgPiWUdL5XzTGruza5PocQvmgz42mjqu/oq+4cSPqNpFkKVZpLCSXfDauJNdvH\nZlaRFUP7uH8rvvv3+SZ2SZsSfvgMNbN5GctbAf8C7jazB6s5bw9yfxabHE8WhecdYAPFdohoM9Z+\nkb4CbAMcBZSb2ey4/lDCl3dVFsVjrlfN+XpUvpDUjvDFsiRXoGa2BngQGBIfj2V8ubwNXJyRGDuZ\nWXszeyDzEBnP3yV8qVTGsS7f/oJ7m1Ddlnm8tmb2bq44Ce9/qyqWv02ocss8Zgcz+0Uex/zWdSP8\nDVYD75vZajO7yMy2J1SrHU6ohsPMnjazg4CuhJJWdbfH1ufOm3uBfwObmNn6hGqS6v6vV3dtcn0O\na6PKc0jam1BFdayZrW9mnQjVdPVt2P6IUEXVI2PZN7HHz9a/gavNbEzWvtcDn5rZ72s4fn0+i0XL\nk0WBMbNFhPrQSxUakXck1I/fHdevBF4ntA+Mj7u9TPi1Ov67R4T4IX4S+Juk9SW10tp74O8DfiJp\nJ0nrEKoaXjWzt6sJMfs/8r3A8YRf5PdmLL8VOD2WOiSpXWx4bU/V/gUcIWkPSa0JVRCZ5/o7cImk\nzeCbxvRB1Rwr223AnyRtFWPZUeEmgceBrSWdFK9JK0m7SfpBHse8D/ilQuNze8J1u9/MKmLjay9J\nJYRqx1XAGkkbKTQmt4vLPmftbdTZ8vnCrG6b9sBSM/taUl/C36a65DOS8PffX+FGgO6Stsn1Oayl\n6q5/e0KC/UhS69iY3LEOx/+WjB8xF0tqL2lz4JcZsd8OzDazv2buJ2k4sA9wUo5T1OezWLQ8WRSO\nzP/MQwi/it4BHiLUoT+XsX48ocpjQsbr9oQGyeqcTPiCmkOoPjgLwMzGAn8gNNC+A2xB+PKvKq7K\n198sM7MJwApCtcyTGctfB4YRGkg/ITQGD63ieJXbzyK0v9wf41hOaGD8Km5yLaHR+GlJnxFKWH1r\niDPTVYQvj6cJv1xvBdqY2QrgoPh+lxBKN5cSGnRzuZ1Q3fQ88BahCuTMuK4r8M94rlmEEt8owv+3\nX8ZzfQzsDfy/ao6ffV9/Ve+vuvf8c+CieJ3+QKhuqfokZv8ltLFcTWjoLif8CoeaP4dV9TuoLp4q\nrz+hqu4p4A1CG8EXhF/tmcer6e9a07ozCcn4LeAFQnvY7XHdYOCHGXc9faZwF9bxhM//Oxnrzqvi\n2Lk+i02SYgNNMgeXbgcOAz4ws17VbHMd4U6GlYQGz8lx+UBCw1wJcJuZXZ5YoK7gxF/rSwmNj//L\ntb1zLllJlyzuINxaVyVJhxK+DHoS7la4KS4vIfwiHUi4y2KIpG0TjtWlTNIRktrGapq/AtM8UThX\nGBJNFmb2AuHXYXUGAXfGbV8D1pfUlVCkm2dmC81sFaFq4sgkY3UFYRChimYJsCXfrg5zzqUo7WEW\nuvPt2ycXx2Xdqli+eyPG5VJgZsMI7RzOuQJTCA3cPv6Lc84VuLRLFksIHcYqbUIoRbTKWr4pVdzf\nLSm51nnnnGvCzKxWP9TTLlk8SuysJKkfoTPM+8BEoGe8h7014Va3R6s6QEN3aa+oMJYuNebMMcaP\nNx54wLjuOmPECOOkk4x99jF69DBatza6djX69jWOO844/3zj9tuNF14wfv3rC6moSL97fubjwgsv\nTD0Gj6npxFSocXlM+T3qItGShaT7CENRbChpEWFwtFYAZnazmT0h6VBJ8wj3RP8krlst6QzCfdgl\nwEgLPZUTJ8H664fHNjUMxLBmDbz3Hrz9NixYAPPmwXPPwS23wNSp4d+ttgrH2H778NhhB/j+96Gk\npDHeiXPONZxEk4WZDcljmzOqWf4kGZ28Ck1JCXTvHh577PHtdWVlcPbZIYHMmQMzZsDIkTBzJrz/\n/toE0rs39OkDO+8MnZr+AMfOuSKWdptFk1RaWkqnTrDbbuGRacUKmDUrJI4pU+CRR8K/nTuHpNGn\nT3jsvjtssEHDxlRoPKb8FGJMUJhxeUzJSbQHd9IkWTHHX6miIpRCJk0Kj9dfh4kToWtX6NcvlFz6\n9QvVWC09vTvn6kkSVssGbk8WBWrNmlACeeUVePXV8O/ixbDrrrDvvuHRrx+su27akTrnio0niyZu\n6dKQNMaPD48ZM0LVVWXy6N8f2lU5w4Fzzq3lyaKZWbECXn55bfKYOjW0kRx0EBx4YEgkLdK+Odo5\nV3A8WTRzy5eHpPH00/DMM/DRR3DAASF5DBwI3brlPoZzrunzZOG+ZdGikDSefjo8ttwSjjgiPHr3\nDn1KnHPNjycLV61Vq+DFF+Gxx8Ljyy/h8MND4th/f2jTJu0InXONxZOFy4sZzJ0Ljz4aEse0aSFh\nHHUUHHkkrFfVTN3OuSbDk4Wrk48+gieegNGjYdw4KC2F446DQYOgY71nRHbOFRpPFq7eli0LpY0H\nHwyN5fvtFxLHEUdAhw5pR+ecawieLFyD+vTTUFX14IPwwgvhzqohQ0Li8DYO54qXJwuXmKVLwzhW\no0aFsayOPRZ+/OPQi9zvqnKuuHiycI3i7bfh7rvhzjtDY/nQoXDyybD55mlH5pzLhycL16jMYMKE\nkDQefBB69QqJ49hjoX37tKNzzlXHk4VLzVdfweOPh8Tx4osweDAMHx46/znnCosnC1cQliwJkz3d\ndhtsvDGcfnpIHm3bph2Zcw48WbgCs2YNPPkk/P3vYbTcE04IpY0ddkg7Mueat7okCx+T1CWmpCQM\nKfL44zB5cpg69uCDYa+94N574euv047QOZevRJOFpIGS5kh6U9K5VazvJOlhSVMlvSZp+4x1IyTN\nlDRd0r2S1kkyVpeszTaDiy6C//0Pfv3rUEW1xRZwySWhB7lzrrAlliwklQA3AAOB7YAhkrbN2ux8\nYJKZ7QQMBa6N+/YAhgF9zKwXUAIcn1SsrvG0bBnGoHruuVBFNX8+9OwJw4aFyZycc4UpyZJFX2Ce\nmS00s1XA/cCRWdtsC4wDMLO5QA9JnYHPgFVAW0ktgbbAkgRjdSnYccfQED53bih5HHggDBgQqq0q\nKtKOzjmXKclk0R1YlPF6cVyWaSpwNICkvsDmwCZm9glwJfA28A7wqZk9m2CsLkUbbQR/+AMsXBh6\nhV94IfzgB/C3v8EXX6QdnXMOkk0W+dymdBmwvqTJwBnAZGCNpC2Bc4AeQDegvaQTkwrUFYZ11gk9\nwSdODCWOp54K7RqXXhrGqXLOpadlgsdeAmya8XpTQuniG2a2HDi18rWkBcBbwGHAy2b2cVz+ENAf\nuCf7JGVlZd88Ly0tpbS0tKHidymRYO+9w2PGDLj88jDL37BhcM450LVr2hE6V1zKy8spLy+v1zES\n62cR2xrmAgcQqpImAEPMbHbGNusBX5jZ15KGAXua2SmSegN3A7sBXwL/ACaY2Y1Z5/B+Fs3EwoVw\n5ZVwzz1hyPTf/jYkEOdc7RVUPwszW02oWhoDzAIeMLPZkoZLGh432w6YLmkOcDBwdtx3CnAXMBGY\nFre9JalYXeHr0QOuvx7mzIHOnWH33cNw6dOm5dzVOdcAvAe3K0rLl8PNN4fSxp57hkbxXr3Sjsq5\n4lBQJQvnktShA/zmN6Gfxh57hNtujzvO+2o4lxRPFq6otW0beoTPnw+77RZm8xs8GGbNSjsy55oW\nTxauSWjXLjR6z58Pu+wS5g4fMgRmz869r3Mut5zJQtKofJY5Vwjat4ff/S4kjZ12gn33DX03FixI\nOzLnils+JYtvDSgdb4ndJZlwnGsY7dvDeeeFpLHVVrDrrnD22fDhh2lH5lxxqjZZSDpf0nKgl6Tl\nlQ/gA+DRRovQuXro0CHcKTV7dpgGdttt4Y9/DHdTOefyl/PWWUmXmdl5jRRPrfits6623noLLrgA\nxo6F888PkzG1bp12VM41rsRmypPUnTDI3zfDg5jZ87WOsIF5snB1NWUKjBgBb7wBf/oTHH88tPDb\nPVwzkUiykHQ5MJjQC3tN5XIzO6IuQTYkTxauvsrLQ9vGqlVw9dWwzz5pR+Rc8pJKFm8Avczsq/oE\nlwRPFq4hmMGDD4a7qHbbDf7yF/j+99OOyrnkJNWDez7gtbquyZJCR745c2DnnaFvXzj3XPjss7Qj\nc65w5JMsvgCmSLpF0vXxcV3SgTnX2NZdF/7v/2D69HCL7TbbwC23wJo1ufd1rqnLpxrqlPi0ckMB\nZmZ3JhhXXrwayiVp0iT45S/DxEtXXRWGEnGuKUjybqi2wGZmNqeuwSXBk4VLmhk8/HAYSqRXL7jm\nmjBcunPFLJE2C0mDCNOdPhVf7yzJO+W5ZkGCo48OAxPutlvoCf7nP8OXX6YdmXONK582izJgd2Ap\ngJlNBvxeEdesrLNOaM94/fVQPbXDDvDkk2lH5VzjySdZrDKzT7OWVSQRjHOFbvPN4aGHwqx9Z50F\nRx0Vpnx1rqnLJ1nMlHQi0FJST0nXAy8nHJdzBe2QQ8JdU7vu6lVTrnnIJ1mcCWwPfAXcB3wGnJNk\nUM4VgzZtQtXUxImheqpXLxgzJu2onEtGonNwSxoIXAOUALeZ2eVZ6zsBtxPaQL4ETjWzmXHd+sBt\nhERlcd2rWfv73VCuYDzxBJxxRpjm9eqrYaON0o7Iuao16N1Qkq6N/z5WxSPn3VCSSoAbgIHAdsAQ\nSdtmbXY+MMnMdgKGAtdmrLsWeMLMtgV2BHzOM1fQDj00VE117x5KGXfcEW69da4pqLZkIWkXM3td\nUmkVq83Mxtd4YGkP4EIzGxhfnxd3vCxjm8eBy8zsxfh6HrAH8DUw2cxqvOvKSxauUE2eDMOGhfk0\nbr4Ztt467YicW6tBSxZm9np8OhF4wczKzawceCEuy6U7sCjj9eK4LNNU4GgASX0Jw6BvAmwBfCjp\nDkmTJN0aOwY6VxR23hlefRWOPBL694eLL4avv047KufqrmXuTRgLHACsiK/bAmOA/jn2y+cn/2XA\ntZImA9MJnf/WEAYu7AOcYWb/lXQNcB5wQfYBysrKvnleWlpKaWlpHqd1LnktW8I554Tba3/+c+jT\nB269NbRpONeYysvLKS8vr9cx8hkbaoqZ9c61rIr9+gFlGdVQI4CK7EburH0WAL2A9sArZrZFXL4X\ncJ6ZHZ61vVdDuaJgBv/8Z0geRx8Nl10W5gl3Lg1JDVH+uaRdMk6yK2Ek2lwmAj0l9ZDUmjCB0rca\nxiWtF9chaRgw3sxWmNl7wCJJlTW9A4CZeZzTuYIkwXHHwcyZsGJFaAAfNy7tqJzLXz4li92A+4F3\n46KNgcFmlrPdQtIhrL11dqSZXSppOICZ3Rwbwf9BqLKaAZxmZsvivjsRbp1tTZhT4yeV6zKO7yUL\nV5T+8x84/XQ44ogw2ZKXMlxjSnLU2dbANoQv9blmtqpuITYsTxaumH36KfzqV6GEMXIk7L9/2hG5\n5qJBk4WkA8xsrKQfEZJE5YENwMweqk+wDcGThWsKnnwSfvYzOPzwUMro0CHtiFxT19BtFpVT1x8R\nH4fHR+Vr51wDOOQQmDEj3FrbqxeMHZt2RM59V00li3PM7BpJe1V2mis0XrJwTc1TT4VSxmGHwRVX\neFuGS0ZDlyx+Ev+9vu4hOedqY+DAMGTIF1+s7djnXCGoqWRxH7Arodf1/KzVZmY7JhxbTl6ycE3Z\n6NHwi1/A8OHw+99Dq1ZpR+Saiga/G0pSV0Jv7UGsbeAGwMwW1iHGBuXJwjV1774Lp50GH34Id98N\n22yTdkSuKWjoUWfHxs5xY8zsf2a2MPNR32Cdc7ltvHHok3HqqbDnnnDjjT6SrUtHTdVQs4BhwEjg\nBELJ4puNzWxSYwRYEy9ZuObkjTfgpJNggw3g9tuhW7e0I3LFqqH7WRwLnAbsSRWjzJrZfnUJsiF5\nsnDNzapVYQTbm24KpYxjjkk7IleMEunBLekCM7uoXpElxJOFa65eew1OPDH0+r7mGmjrA/i7Wkhq\nIME/SzpZ0gXxJJvFuSeccynZfXeYNAlWroRdd4Vp09KOyDV1+SSLvxFmrzshvl4RlznnUtSxY7hD\nasQIOOAAb/x2ycqnGmqyme1c+W9cNjXOm50qr4ZyLnjzTTj+eNhkk9D4/b3vpR2RK2RJVUN9Lakk\n4ySdgYraBuecS07PnvDKK+Hf3r2hnpOiOfcd+SSL64GHgY0kXQK8BFyaaFTOuVpr3Rr++tcwdeuQ\nIfCHP8Dq1WlH5ZqKfOez2JYwDzfAWDObnWhUefJqKOeq9t57MHRoaAC///5QPeVcpaSqoQDWIXTK\nE2HmOudcAevaNYxge9hh4W6pMWPSjsgVu5zJQtLZwN1AZ2Aj4G5JZyUdmHOuflq0CHdK3X9/GC7k\nD3+ANWvSjsoVq3zuhpoO9DOzz+PrdsCrZtarEeKrkVdDOZef996DE+LN7/feG0oervlKshqqoprn\nuQIaKGmOpDclnVvF+k6SHpY0VdJrkrbPWl8iabKkx/I9p3Puu7p2hWeegb32gl128bulXO3lkyzu\nAF6TVCbpj8CrwO25doq3294ADAS2A4bEhvJM5wOTYp+NocC1WevPBmaRMYChc65uSkrgootCP4zj\nj4dLLoEKvwne5SlnsjCzqwiz5i0FPgZOMbOr8zh2X2BeHNJ8FXA/cGTWNtsC4+J55gI9Yj8OJG0C\nHArcRtZcGs65ujv4YJg4EZ54Ag4/HD7+OO2IXDHIp4G7H/CmmV1rZtcB8yXtnsexuwOLMl4vjssy\nTQWOjufpC2wOVN7kdzXwW7wDoHMNbpNNYNw42H576NMnJA/natIyj23+Duyc8frzKpZVJZ+qo8uA\nayVNBqYDk4EKSYcDH5jZZEmlNR2grKzsm+elpaWUlta4uXMuatUKrrgC+vWDQw6Byy8Pd025pqe8\nvJzyejZU5XM31BQz6521bFquObhjiaTMzAbG1yOACjO7vIZ9FgA7AiOAk4HVQBugIzDazIZmbe93\nQznXAGbPhqOOgtJSuPZaWGedtCNySUrqbqgFks6S1EpS69jv4q089psI9JTUQ1JrYDDwaFbA68V1\nSBoGjDez5WZ2vpltamZbAMcDz2UnCudcw9l2W5gwAT74APbdFxYvTjsiV2jySRanE2bLW0Jod+gH\n/CzXTma2GjgDGEO4o+kBM5stabik4XGz7YDpkuYABxPufqrycHnE6Zyrh44dYfRoOPJI6NsXxo9P\nOyJXSPIaG6pQeTWUc8l4+ukwttSIEXDWWSC/H7FJSWRa1ULmycK55CxcCEcfHaqobrkF2rVLOyLX\nUJLswe2ca2Z69ICXXoKWLaF//5A8XPPlycI5V61114V//CPcUrvHHt6O0Zzl0ynvnHjXkiSNjGM1\nHdwYwTnn0ifB2WfDqFFw3HFw881pR+TSkE/J4lQzWwYcBGxA6P9wWaJROecKzoABoVrq2mvh5z+H\nVavSjsg1pnySRWUjyGHAKDObkWA8zrkCttVW8Oqr8PbbcNBB8NFHaUfkGks+yeJ1SU8TBvUbI6kj\nPl6Tc81Wx47wyCNhmJC+fWHatLQjco0hn+E+WhDGgZpvZp9K+h7Q3cxS/4j4rbPOpeu++0I/jFtu\nCcOFuOJQl1tn8xlIcA9gqpmtkHQy0Ae4pi4BOuealiFDoGfP0B9jxgz4/e+9A19TlU811N+BzyXt\nBPwKmAfclWhUzrmiseuu8Npr8PjjcNJJ8OWXaUfkkpBPslgd63p+CNxoZjcCHZINyzlXTDbeOEzV\nuno1HHAAfPhh2hG5hpZPslgu6XzgJODxOF1qq2TDcs4Vm3XXDW0Y++8Pu+8Os2alHZFrSPkki8HA\nV4T+Fu8RZru7ItGonHNFqUUL+NOfoKwszI3xzDNpR+QaSl4DCUrqCuxGGCp8gpl9kHRg+fC7oZwr\nXM8/H3p8l5XB6aenHY3LlMhAgpKOA14DjgWOAyZIOrZuITrnmot99oEXX4Srr4Zf/QrWrEk7Ilcf\n+fSzmAYMqCxNSOoMjM01rWpj8JKFc4Xvk0/gmGOgfXu4997wr0tXUkOUC8i8t+Fj1g4B4pxzNdpg\nA3jqKdhoI9h7b1iyJO2IXF3kkyyeIgzzcYqknwBPAE8mG5Zzrilp3RpuvTW0YfTvDzNnph2Rq618\nqqEEHA3sRWjgfsHMHm6E2HLyaijnis/dd4c2jAcegP32Szua5qkgp1WVNJAwPEgJcJuZXZ61vhNw\nO/B94EvCLbozJW1K6Cm+ESFJ3WJm12Xt68nCuSL03HNw/PFwzTVwwglpR9P8NGiykLSC8CVdFTOz\njnkEVALMBQYAS4D/AkPMbHbGNlcAn5nZnyRtQ+glPiDertvVzKZIag+8Dvwwa19PFs4VqRkz4LDD\nwm21553nY0o1pgZt4Daz9mbWoZpHzkQR9QXmmdlCM1sF3A8cmbXNtsC4eM65QA9Jnc3sPTObEpev\nAGYD3Wrz5pxzhWuHHeDll0N11M9/HoYKcYUr6Tm4uwOLMl4vjssyTSW0iSCpL7A5sEnmBpJ6EIZJ\nfy2hOJ1zKejePXTemz8/DHH++edpR+Sqk88Q5fWRTx3RZcC1kiYD04HJwDfdd2IV1L+As2MJ41vK\nysq+eV5aWkppaWn9InbONaqOHeE//4Hhw8MQIY8/Dl26pB1V01JeXk55eXm9jpFoA7ekfkCZmQ2M\nr0cAFdmN3Fn7LAB6xfkzWgGPA0+a2Xfm0PA2C+eaDjO46CK4667QL6Nnz7QjarqSGu7jrHjHUl1M\nBHpK6iGpNWFQwkezjr9eXIekYcD4mCgEjARmVZUonHNNiwQXXggjRsC++8Lrr6cdkcuUT5tFF+C/\nkh6UNDB+iefFzFYDZwBjgFnAA2Y2W9JwScPjZtsB0yXNAQ4Gzo7L9yQMi76fpMnxMTDfczvnitNP\nfwo33QSHHALPPpt2NK5SvqPOtgAOAk4BdgUeBEaa2fxEo8sdl1dDOddEvfBCGFPquutg8OC0o2la\nkhobCjOrAN4D3ic0PncC/hX7SDjnXIPbe+9QsvjNb+D669OOxuUz3MfZwFDCAIK3AQ+b2apY2njT\nzLZMPsxqY/OShXNN3MKFcPDBcOyxYWIl77xXf3UpWeRz6+wGwNFm9r/MhWZWIemI2pzMOedqq0eP\nMC/GYYcTdkPDAAAW5klEQVTBe+/B3/8OLZO+6d99Rz7VUFtmJwpJowDMzGfZdc4lrnPnMJ7UokXw\nox/BF1+kHVHzk0+y2D7zhaSWwC7JhOOcc1Vr3x4eeyz8e9BB8OmnaUfUvFSbLCSdL2k50EvS8soH\n8AFZfSWcc64xtG4No0ZBnz5hePMPPkg7ouYjnwbuy8zsvEaKp1a8gdu55skM/vhHuP9+ePpp2Gyz\ntCMqLg09RPkPzGyOpF2oYownM5tUtzAbjicL55q3q68Oc2I88wxsvXXa0RSPhr4b6tfAMOBKqh4Q\n0Oe4cs6l6pe/hPXWCwMQPvEE9O6ddkRNV43VULEvxR5m9lLjhZQ/L1k45wBGjw5zYjz0EOy5Z9rR\nFL4G78Ede27fWK+onHMuYT/6URit9qijYMyYtKNpmvK5dfZZScfUZgBB55xrbAcfDP/+NwwdCv/6\nV9rRND353A21AmhLGBPqy7g4rzm4k+bVUM65bFOmwKGHwp//DKeemnY0hSmR4T7MrH3dQ3LOucbV\nuzeUl8OBB4ZpWs88M+2Imoa8RliJkx/1BNpULjOz55MKyjnn6mPrrWH8eDjggDA0yO9+l3ZExS9n\nsoiz150FbEqYH7sf8Aqwf7KhOedc3fXoAc8/vzZhXHCBj1hbH/k0cJ8N9AUWmtl+wM7AskSjcs65\nBtC9eyhhjB4dpmv1Js66yydZfGlmXwBIamNmc4Btkg3LOecaRpcuMG5c6OV9zjmeMOoqn2SxKLZZ\n/Bt4RtKjwMJEo3LOuQb0ve/B2LEwYQKcfjpUVKQdUfHJaw7ubzaWSoGOwFNm9nUe2w8ErgFKgNvM\n7PKs9Z2A24HvE27LPdXMZuazb9zGb511zuVt+XI4/HDYfHO4/fbmO4lSQw8kuEFNO5rZJzmCKQHm\nAgOAJcB/gSFmNjtjmyuAz8zsT5K2AW40swH57Bv392ThnKuVlSvhhz+E9deHe+6BVq3SjqjxNfRw\nH5OA12t45NIXmGdmC81sFXA/cGTWNtsC4wDMbC7QQ9JGee7rnHO11rYtPPoofPklHHMMfPVV2hEV\nh2qThZn1MLMtqnvkcezuwKKM14vjskxTgaMBJPUFNgc2yXNf55yrkzZtwpAgLVuGcaU8YeSWTz+L\nfapankenvHzqhy4DrpU0GZhO6MexJs99ASgrK/vmeWlpKaWlpfnu6pxrxlq3DpMnDRkSEsbo0bDO\nOmlHlYzy8nLKy8vrdYx8xoZ6nLVf3m0IVUSvm1mNnfIk9QPKzGxgfD0CqKiqoTpjnwVAL2CHfPb1\nNgvnXH2tWgUnnBDaMkaPDqWOpq7BhygHMLPDzeyI+DiQ8EWez1TpE4GeknpIag0MJmvubknrxXWV\nPcXHm9mKfPZ1zrmG0KoV3HsvtGsHRx8d2jLcd+XTzyLbYkLDdI3MbDVwBjAGmAU8YGazJQ2XNDxu\nth0wXdIc4GBCb/Fq961DrM45l1NlwujQIcyJ4Qnju/Kphro+42ULoDewwMxOSjKwfHg1lHOuIa1e\nDSedBMuWwcMPN90qqQbtZ5Fx0FMyXq4mjBH1Yu3Da3ieLJxzDW31ajj5ZFi6NEym1BQTRiLJopB5\nsnDOJWH16jDj3scfh4Sx7rppR9SwkipZTCfcDZV54GWEXtV/NrOPaxtoQ/Fk4ZxLyurV8OMfw4cf\nwiOPNK2EkVSyuIJQ/XQvIWEcT5hm9T1gTzM7om7h1p8nC+dcktasCQnj/fdDwmjbNu2IGkZSyWKy\nme1c1TJJ082sVx1ibRCeLJxzSVuzBk45Bd59NwwT0hQSRiL9LIASSbtnnKRvxn6ra3My55wrNiUl\n8I9/wMYbN+/bavMpWewG3AG0j4uWA6cBM4HDzOzBRCOsOTYvWTjnGsXq1XDiifD55/DQQ2G4kGKV\n6N1QktYDMLOCmVLVk4VzrjGtWgWDB4fnDzxQvMObJ9Vm0Qb4EdCDtQMPmpldVJcgG5InC+dcY/v6\n6zAsSPv2YT6MkpK0I6q9pNosHgEGAauAFfHxee3Dc8654te6dRje/JNP4NRTm88UrfmULGaY2Q6N\nFE+teMnCOZeWlSvh0EOhZ0+4+WZoUZeR9lKSVMniZUk71jEm55xrktq2hccfh1mz4KyzoKn/bs2n\nZDEb2ApYAFTOJ2VmlnoC8ZKFcy5ty5bBgQfC3nvDX/8KqtXv9XQk1cDdo6rlZrawNidKgicL51wh\nWLoU9t8fDjkELr648BNGXZJFzmlVK5OCpI0IM+U555zL0KkTPPMM7LdfGKX2ggvSjqjh5TMH9yDg\nSqAb8AGwOTAb2D7Z0JxzrnhsuCE8+yzsu2+Yy/vcc9OOqGHl08D9Z2AP4A0z2wI4AHgt0aicc64I\ndekCY8fCrbfCNdekHU3DylmyAFaZ2UeSWkgqMbNxkq5NPDLnnCtC3bvDc8+FBu+OHUNfjKYgn2Sx\nVFIH4AXgHkkfEDrmOeecq8Jmm4U2jNLSMK/3scemHVH95VMNdSSwEvgl8BQwD8hrDgtJAyXNkfSm\npO/U4EnaUNJTkqZImpE5haukEZJmSpou6V5J6+T1jpxzrgBsvTU8+SSccUb4t9glNq2qpBJgLjAA\nWEKYWW+Imc3O2KYMWMfMRkjaMG7fBdgEeA7Y1sy+kvQA8ISZ3Zl1Dr911jlX0F55BQYNgtGjYZ99\n0o4mSKoHd131BeaZ2UIzWwXcTyilZHoX6BifdwQ+NrPVwGeEsajaSmpJmJlvSYKxOudcIvbYA+67\nD445BiZOTDuauksyWXQHFmW8XhyXZboV2F7SO8BU4GwAM/uEcLvu28A7wKdm9myCsTrnXGIGDAh3\nSB1+eBgepBjl089iAPCSmX1Ry2PnUz90PjDFzEolbQk8E8eh6gKcQxgWfRnwT0knmtk92QcoKyv7\n5nlpaSmlpaW1DNM555J35JGwfDkcfDA8/zxssUXjnbu8vJzy8vJ6HSOf4T7uAvoBS4Hn4+NFM1ua\nY79+QJmZDYyvRwAVZnZ5xjZPABeb2Uvx9VjgPGAL4CAz+2lcfjLQz8x+kXUOb7NwzhWVv/0NrrwS\nXngBunVLJ4ZE2izMbKiZbQ0cRahWuhH4MI9jTwR6SuohqTUwGHg0a5s5hAZwJHUBtgHmExq6+0la\nV5LiNkVaeHPOubV+/nMYNiwMPvjRR2lHk798qqFOBvYCdiQkiRuAF3PtZ2arJZ0BjAFKgJFmNlvS\n8Lj+ZuAS4A5JUwmJ63exveKTWKKZCFQAk4Bb6vD+nHOu4Jx3XhitduDA0IGvY8fc+6Qtn2qojwm/\n9m8Cys1sQWMElg+vhnLOFSsz+MUvYObM0A+jbdvGO3dSQ5SLMGjg3vGxFWGcqJPqGmhD8WThnCtm\nFRUwdGiYovWRR6BVq8Y5b1L9LDoAmxFGm+0BrE+oGnLOOVcPLVrAHXdASUnhz+edT8liGvASYWyo\n581scWMElg8vWTjnmoKVK+Ggg2C33eCqq5KfPCmRaqiMg3cgTKdaMIMIerJwzjUVS5eG4UBOPDE0\ngCcpkZnyJPUC7gK+F19/CPzYzGbUKUrnnHPf0akTjBkDe+4JnTvDaaelHdG35TNE+S3Ar8xsHICk\n0risf4JxOedcs9OtW0gY++4L3/se/PCHaUe0Vj7Jom1logAws3JJ7RKMyTnnmq2tt4bHHoNDD4UN\nNiickWrzuRtqgaQ/xJ7YW0j6PfBW0oE551xzteuucO+9YaTaqVPTjibIJ1mcCmwEPASMBjrHZc45\n5xIyYADccEMoYbxVAD/PE5v8qDH43VDOuabuppvCwIMvvQRdujTMMRv0bihJj9Wwn5nZoNqcyDnn\nXO39v/8H778PhxwC5eXpjSNVbcki3vVUHTOz8YlEVAtesnDONQeV40jNmQNPPAFt2tTveA3aKU/S\n5mb2v/qFlCxPFs655mLNGhgyJPz74INhiJC6auixof6dceDRdY7KOedcvZWUwKhR8OmncNZZobTR\nmPKdg/v7iUbhnHMup3XWgYceghdfhMsua9xz59MpzznnXIFYb70w/0X//tC9exjivDHU1GaxBlgZ\nX64LfJGx2sws9bmdvM3COddczZ4NpaWhauqgg2q3b6KjzhYiTxbOuebsxRfhqKPCeFJ9+uS/X1KT\nH9WZpIGS5kh6U9K5VazfUNJTkqZImiHplIx160v6l6TZkmZJ6pdkrM45V2z22gtuvhmOOAIWJDzh\ndWIlC0klwFxgALAE+C8wxMxmZ2xTBqxjZiMkbRi372JmqyXdCYw3s9sltQTamdmyrHN4ycI51+zd\ncANcf33o5b3hhrm3L7SSRV9gnpktNLNVwP3AkVnbvAtUtn10BD6OiWI9YG8zux3AzFZnJwrnnHPB\nGWeE6qhBg8Kse0lIMll0BxZlvF4cl2W6Fdhe0jvAVODsuHwL4ENJd0iaJOlWSW0TjNU554raJZfA\nllvCCSeEjnsNLclkkU/90PnAFDPrBvQGbozTt7YE+gB/M7M+wOdAwhMNOudc8WrRAkaOhM8/hzPP\nbPhOe0n2s1gCbJrxelNC6SJTf+BiADObL2kBsE3cbrGZ/Tdu9y+qSRZlZWXfPC8tLaW0tLQBQnfO\nueLTujWMHg0DB8Ibb8A224Tl5eXllJeX1+vYSTZwtyQ0WB8AvANM4LsN3FcBy8zsj5K6AK8DO5rZ\nJ5KeB35qZm/EhvB1zezcrHN4A7dzzmWpqAgljeo06BDl9RUbqs8AxgAlwEgzmy1peFx/M3AJcIek\nqYQqsd+Z2SfxEGcC90hqDcwHfpJUrM4515TUlCjqyjvlOedcM1Not84655xrIjxZOOecy8mThXPO\nuZw8WTjnnMvJk4VzzrmcPFk455zLyZOFc865nDxZOOecy8mThXPOuZw8WTjnnMvJk4VzzrmcPFk4\n55zLyZOFc865nDxZOOecy8mThXPOuZw8WTjnnMvJk4VzzrmcPFk455zLyZOFc865nBJNFpIGSpoj\n6U1J51axfkNJT0maImmGpFOy1pdImizpsSTjdM45V7PEkoWkEuAGYCCwHTBE0rZZm50BTDaz3kAp\ncKWklhnrzwZmAZZUnEkoLy9PO4Tv8Jjy4zHlrxDj8piSk2TJoi8wz8wWmtkq4H7gyKxt3gU6xucd\ngY/NbDWApE2AQ4HbACUYZ4MrxA+Hx5Qfjyl/hRiXx5ScJJNFd2BRxuvFcVmmW4HtJb0DTCWUJCpd\nDfwWqEgwRuecc3lIMlnkU3V0PjDFzLoBvYEbJXWQdDjwgZlNpshKFc451xTJLJnmAEn9gDIzGxhf\njwAqzOzyjG2eAC42s5fi67HAecBRwMnAaqANoYpqtJkNzTpHUbVlOOdcoTCzWv0QTzJZtATmAgcA\n7wATgCFmNjtjm6uAZWb2R0ldgNeBHc3sk4xt9gV+Y2ZHJBKoc865nFrm3qRuzGy1pDOAMUAJMNLM\nZksaHtffDFwC3CFpKqFK7HeZiSLzcEnF6ZxzLrfEShbOOeeajqLtwZ2rw18aJC2UNC12JJyQUgy3\nS3pf0vSMZRtIekbSG5KelrR+gcRVJmlxvF6TJQ1sxHg2lTRO0szYIfSsuDzVa1VDXGleqzaSXoud\nZ2dJujQuT+1a1RBTatcpI7ZvdSZO+zNVTUy1vk5FWbKIHf7mAgOAJcB/yWoPSSmuBcAu1VSlNVYM\newMrgLvMrFdc9hfgIzP7S0ysnczsvAKI60JguZld1ZixxHN3Bbqa2RRJ7QntZT8EfkKK16qGuI4j\npWsV42prZitjW+SLwG+AQaR7raqK6QBSvE4xrl8BuwAdzGxQgfz/y46p1v/3irVkkU+Hv7Skequv\nmb0ALM1aPAi4Mz6/k/Dl06iqiQtSul5m9p6ZTYnPVwCzCf2AUr1WNcQFKX62zGxlfNqa0Aa5lPSv\nVVUxQYrXqZrOxKlep2piErW8TsWaLPLp8JcGA56VNFHSsLSDydDFzN6Pz98HuqQZTJYzJU2VNDKN\n4jmApB7AzsBrFNC1yojr1bgotWslqYWkKYRrMs7MZpLytaomJkj3M1VVZ+K0P1NVxWTU8joVa7Io\n1LqzPc1sZ+AQ4Bex6qWgWKh3LJTrdxOwBaFD5rvAlY0dQKzqGQ2cbWbLM9elea1iXP+Kca0g5Wtl\nZhVxDLdNgH0k7Ze1vtGvVRUxlZLidVIenYkb+zrVEFOtr1OxJoslwKYZrzcllC5SZWbvxn8/BB4m\nVJcVgvdjXTiSNgY+SDkeAMzsA4sIReRGvV6SWhESxSgz+3dcnPq1yojr7sq40r5WlcxsGfAfQv13\n6tcqK6ZdU75O/YFBse3yPmB/SaNI9zpVFdNddblOxZosJgI9JfWQ1BoYDDyaZkCS2krqEJ+3Aw4C\npte8V6N5FPhxfP5j4N81bNto4n+cSkfRiNdLkoCRwCwzuyZjVarXqrq4Ur5WG1ZWU0haFzgQmEyK\n16q6mCq/lKNGvU5mdr6ZbWpmWwDHA8+Z2cmkeJ2qiWloXT5PiXXKS1J1Hf5SDqsL8HD4v05L4B4z\ne7qxg5B0H7AvsKGkRcAFwGXAg5JOAxYS7qxJO64LgVJJvQnF8gXA8EYMaU/gJGCapMlx2QjSv1ZV\nxXU+YYj/tK7VxsCdkloQfmCOMrOxMb60rlV1Md2V4nXKVlndlPZnqpIyYvqLpJ2oxXUqyltnnXPO\nNa5irYZyzjnXiDxZOOecy8mThXPOuZw8WTjnnMvJk4VzzrmcPFk455zLyZOFK3qSukq6X9K8OC7X\nfyT1TPB8/5D0o1rusyLj+RUKw49fXtM+9RGHoP51Usd3zU9RdspzrlLs8fwwcIeZHR+X7UjoJPlm\nQqetS+ekzH2GEYapTrKTk3egcg3KSxau2O0HfG1mt1QuMLNpZvYifPMrfrrCpFTHxWWlksol/VPS\nbEl3V+4raZe4bqKkp7KGj8i0j6SXJM2vLGVIai/pWUmvx/MNyt5J0qNAe2BSZTwZ6/pKelnSpHjs\nrePyUyQ9JOlJhQl0Ls/Y5zRJcxUmArpV0vVVnHPLuO9ESc9L2ib/y+tc4CULV+x2IEwQ9B3xS3wn\nYEegM/BfSc/H1b2B7Qgjbr4kaU9gAnA9cISZfSxpMHAxcFr2oQkTFO0paVvC2D+jgS+Ao8xsuaQN\ngVfIGrMsTjyzPI5OnG02sLeZrZE0gDBH/TFx3U4x5q+BuZKuI5Qefk8YxnwF8BwwJfN08d9bgOFm\nNk/S7sDfCJMEOZc3Txau2NVU3bIncG+s7vlA0nhgN+AzYIKZvQOgMCdCD2AZsD1hThII4469U805\nK0eDnS2pcn6CFsClCkPTVwDdJG1kZvmOMro+cJekreI5Mv9/jq0cQl3SrBhvZ2C8mX0al/8T2Drz\ngHFQy/7AP+N7gjBZkHO14snCFbuZrP31XZXseQUqk8tXGcvWsPb/wkwz65/Heb+u4hwnAhsCfWLp\nYAHQptrApF8AP40xHQb8iZAUjpK0OVCesXlV8WYnyqrmUGgBLK2mJONc3rzNwhU1M3sOWEcZMxNK\n2lHSXsALwGCFGdU6A/sQqpqq+lI1wrzunSX1i8dpJWm7WoTTkTDRzBqFyYE2zxH7jWa2s5n1iXOh\ndGRtSeYnOc5lhLnn95W0vsI81D9ibQIRYaDQ5cACScfE96R4A4BzteLJwjUFRwED4q2zMwjtDO+a\n2cPANGAqMBb4bawSqnK2sjif+zHA5bFqajKwRzXntCqe3wPsKmkacDKhDaKm7bP9hVCNNYlQBWYZ\n21cV7zuEdo0JwIuEoaaXVbHPicBp8T3NIMwJ7Vyt+BDlzhUxSe3M7PNYsniIMLfLI2nH5ZoeL1k4\nV9zK4iRE04G3PFG4pHjJwjnnXE5esnDOOZeTJwvnnHM5ebJwzjmXkycL55xzOXmycM45l5MnC+ec\nczn9fz3Z5kcdf0JSAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x58b7b50>"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex9-pg276"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "print \"Example 5.9\"\n",
      "#plot the graphs\n",
      "import math\n",
      "import numpy\n",
      "import matplotlib\n",
      "from matplotlib import pyplot\n",
      "%matplotlib inline\n",
      "alfa=0.1\n",
      "dx=numpy.linspace(0.1,44,88)\n",
      "x=numpy.zeros(88)\n",
      "g1=numpy.zeros(88)\n",
      "count=0\n",
      "g2=numpy.zeros(88)\n",
      "gc1=0;\n",
      "for alfa in dx:\n",
      "\tCa=(math.sin(alfa*math.pi/180.))/(alfa*math.pi/180.)\n",
      "\tCac=(1+math.cos(alfa*math.pi/180.))/2.\n",
      "\tx[count]=Ca\n",
      "\tcount=count+1;\n",
      "\tg1[gc1]=Cac;\n",
      "\tgc1=gc1+1;\n",
      "\n",
      "\n",
      "pyplot.plot(dx,g1)\n",
      "pyplot.plot(dx,x)\n",
      "pyplot.legend([\"Conical\",\"2D-CD\"])\n",
      "pyplot.xlabel(\"Divegent flap angle or Cone half-angle(degree)\")\n",
      "pyplot.ylabel(\"Flow angularity loss coefficient\")\n",
      "pyplot.title(\"Divergent loss of a conical nozzle and a 2D-CD nozzle\")"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 5.9\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "pyout",
       "prompt_number": 2,
       "text": [
        "<matplotlib.text.Text at 0x5b714d0>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEZCAYAAABmTgnDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FdXWh9+V0Am9CKGF3qRJkaaEIk2lqNhRioh+drxX\nRVEQvTYULKjXAujFgooioBQbAZUqVaqgtNCrVGlZ3x97goeYchLOyTlJ1vs88+TMzJ69fzOZmTV7\n77XXFlXFMAzDMFIjItQCDMMwjPDHjIVhGIaRJmYsDMMwjDQxY2EYhmGkiRkLwzAMI03MWBiGYRhp\nkqONhYi8KSJDQq0j0IhInIj0D7UOABG5U0R2icghESkWaj1JEZGbRGRmAPJJEJEqgdB0njr6iMiP\npiP7IyLvichTmVVetjUWIrJJRI55L6kDIvKziAwUEUlMo6p3qurTodSZXvx8CNVbQoqI5AZeAtqr\namFVPRBqTUlR1Q9VtVOodRgpIyIvishv3rO8RkR6++yL8Qz1YW/ZKSJTRaSDH/nWEJHPRGSPiBwU\nkeUi8oCIRJxPvplIpj7n2dZY4C7iFapaGKgIPAc8DIwJZqHiEcwyshBlgHzAmlALMbI0R/j7Wb4V\neEVEWiRJU0RVCwH1gW+BSSJya0oZikhVYAGwGbhQVYsCvYDGQFRG8w0BmfeuUdVsuQAbgXZJtjUF\nzgB1vPX3gKe832uAy33S5gL2AA299ebAXOAAsAxo45M2Dnga+Bk4BlQBOgLrgIPA68BsoL/PMf2A\n1cB+YAZQ0WdfAjAQ+M0rb7S3vTZwHDgNHAb2p3Dus4B+3m8BhgCbgF3A+0Bhb18+4ANgr1fOQqC0\nt68P8DtwCPgDuDGFsvICLwPbvGUUkAeogXvIEzyt36Vw/GfADu86zU7836SQtjgwzitnPzDJZ98A\nYD2wD5gMlE3revqc548+63VxL4V9wE5gsLe9GTDPO3478BqQO0kZVVLQHQcMB37yrudMoITP/m7A\nKi/vWUAtb/t13rVLXE54+8t61zZx+zEgIYXzqeVzPmuBXqlc3764e/KQ97+/3WdfLBAPDPLuo+1A\nH5/9JYApwJ+4l/BTvjrO5/+ezLGTgUHe7xjv2kckSfMgsDOVPD4ApqayP6P5pnavpfYsjk7yvz4F\nDAWuTe4e8I4Zh/f+8tavwL2bDuDeRfX8vaZ+XfdAZhZOC8kYC2/7ZmCgz8Ue7v1+HPjAJ93lwCrv\ndzncC7Wzt97BWy/hrcd5N0BtXG2tlPfQ9PDW7wVO8vcLvDvuxVbT2/8Y8HOSG24KUBioAOwGOnn7\nbk3tIfTS+BqLfl5ZMUBB4HPgf96+gV45+bwbuRFQyEv3J1DdS3cBKTzMuJfgXKCkt/zsc00rJffA\nJTm+j1debpyhWZpK2q+Bj4EiOGN+ibe9HZ5hxxmqV4HZfl7PPonX0zv3HcADXj5RQDNv30U4gxHh\nnddq4L4kZaRmLNYD1bxrPQt41tuXaFTbA5HAv720uZPkUcgrc0Ay+X8AfJjM+RQEtnr3TIR3ffYA\ntVPQ2RWo7P2+FDgKNPLWY3EvsGGezi7e/iLe/gnekh9ncOOBOYH4vyc5Lj/OUHX01mOSu8dwH2wJ\nQM0U8tkB3JpKORnNN7V7LcVnMUkeDb3jGqR2D+BjLHDP7i7cB7EAt+DegXn8ua5+XftAZRRuCykb\ni3n8/bXoe7Gr4b6o8nnrHwJDvN8PJ/2n4moDt3i/ZwHDfPbdgs/L39u2hb9f4NMTf3vrEd6DV8Hn\nhmvps/8T4GHvdx/SZyy+B+7w2VcDZ7gicV+S//gC8W7kA8BVQP40ytqAZ0S99Y7ARu93sg9cKnkV\n9dIXSmZfWVytsEgy+8YAzyXRfxKvtubv9QRuABb7qfV+4Auf9dSMxSzgUZ/1O4Hp3u/HgQk++wT3\nom2T5P74Cng9mbwfBhYBeZM5n+tI8sIG3gKe8PMcJwH3er9jcTWYCJ/9u3AGNNK73jV89v0nrfvU\nn/97MmnfB6b5rCd7j+GMcgLQIoV8TuIZnBT2ZzTf5O61h7zfKT2Lvte0FO7D89ok+f7jHuDcj903\nE3/77F8LXOrP/8CfJTv3WaREeVwTxjmo6gZcU1Q3ESkAXAl85O2uBPTyOsoPiMgBoBWuTT6RrT6/\no3EPvC++65Vw7a6Jee3ztpfzSbPT5/cx3AswI5TF1aYS2YL7Ki8NjMc1iUwQkW0i8ryI5FLVo7gX\nzR3AdhH5SkRqppB/dDL5R/sjzOtIfE5ENojInzgDr7gaSlIq4Jrd/kzrHD39+0j/9ayAa3JLTmsN\n7zrs8LT+B9f04i++5R/n73bxaNw1S9SuuHvJ9xr+x9N7bxJNXbxtPVT1RDJlVgIuTnLf3oirKSZ3\njl1EZL6I7PPSdk1yjvtUNcFn/Zh3HqVw95TvM7CFFEjn/933uBFAHVzTTFok/u/3ex5viR3VXyee\nC37epynlm0qapPda4v86pWfxAjjrEDIR18LxaZI8k70HfKgEPJjkf13eKzMg5ChjISJNcTfITykk\n+Rj3ddkdWK2qiS+OLcB4VS3msxRS1Rd8jlWf39tx/6jEcsV33cvv9iT5FVTV+X6chqad5By2476S\nEqmI6/PYpaqnVXW4qtYFWuLaPG8BUNVvVLUjziCuBd5JR/7b/dR2E669vr2qFgEq476sk+u02woU\nF5EiaWkQkYK4l9w2P3UksgXXzJAcb+KaAKp5Wh8jMM/PNtyDDpy9Vyp42xGR63GG+xpVPeOTriau\nz62XqqZ0nltwzXFJ79u7kiYUkby4ZpEXcP1WxYBp+NeBugd3T1X02VYxhbSQvv97or4ngU642sAR\nPzT1xN3j69R5vBXylsu9/d8BV/uRT4r5ZuDYFJ9Fb/014KCqnuPOn9I9kIQtwH+S/K+jVPWTDOhM\nluxuLARARAqLyBU4YzBeVVf57vdhAu6GvAPXDJXIB8CVItJRRCJFJJ+IxIqI75erb15fA/VEpLuI\n5ALu4txayH+BR0WkjqeviIj0SuM8EvPfBZT3vkL84WPgAc8VMAp4BtfskeCdQz0RieTvTrUzIlLa\n017Q23YU1wSUUv5DRKSkiJQEnsDVWPwhCtdht98r65mUEqrqDlzz3RsiUlREcovIpT4a+opIA++l\n9wwwX1VT+rpN6cX0NVBWRO4TkbwiUkhEmvloPQwcE5FauKak9JDSi/Az4HIRaef9Tx8E/gLmikgj\n3Aukp6om1j4RkcK4Tt7HVHVuKmV+DdQQkZu965VbRJp6+pOSx1v2AgleraWjPyfmvcC+AIaJSH7v\nvr6VlD9s/P6/A4jIYNxH3GWasvt14rN+gYjcjbsPB6eS7VCgpYi8ICKJX/bVRGS8d30zmm9yuhL/\n96k9iwNx/UQ3n3NwCvdAMnm/A9whIs08h8yCInK5V05AyO7GYqqIHMJZ3cE4n/++PvsVnxtaVXfi\nOmtb4NoaE7fH42obj+I6nrbgHmpJkldi+n04N7wXcA9fbeAX3AOCqn4JPI9r/vkT+BVnpP6RVzI6\nv8d5zuwUkd1+XIOxuJf3HFwTyzHgHm9fGdzL6k/cV3OclzYC18m7DVddv4SUX45Pe+e2wlt+8bal\ndC6+/A9XLd8GrMT1J6WWvjfOeK3FGc17AVT1e1zb/+e4r7fKwPWpaPC9nmd/q+ph4DJcE+QOnEdL\nrJfuX7gmnEPA27gPC99806rxJU2bWOY63AviNdwX+uXAlap6Gvf1XRT4KUkzSiNce/con+2HUjif\njt612Oad07M4o3CuOJf2XuBTXBPLDTiDlNI5JOVunBHYibvnxqaSNr3/9//galsbfM73kSRpDorI\nEdw92Bn3Ff5eShl6rQYtcF/6q0TkIK4JaBHO4SBD+SZzHr73WmrP4vW4+3a7zzkOJuV74Jy8VXUx\nziNwNO7/tx6vlSBQiNcREhREZCzu5t+tqvVSSPMqzrPiGM4Vb6m3vTPOJTMSeFdVnw+a0CAjIhG4\nZpQbVXV2qPUYhmGkl2DXLMbhrHGyiEhXXBtwdeB2XLswXrPIaO/YOsANIlI7yFoDitdkVdRrFnnU\n2+xPn4RhGEbYEVRjoao/4lwwU6IbzhUOVV0AFBWRMjh3vA2quklVT+Gq/N2DqTUItMC5lSY2LaTk\nsWIYhhH25Apx+eU4190u3tsWncz2izNR13mjqk8CT4Zah2EYRiAIhw5ui6NkGIYR5oS6ZrEN5+WQ\nSHlcLSJ3ku0V+OcgN0QkeL3zhmEY2RhVTdeHeqiNxRScy90EEWmOG5CyS0T2AdVFJAbnCnkdzpXv\nHwTam0sVjhyB3bth1y7YsQO2b1c27zjKxp372bJ3HzsO7mP3kT3kKb6HwmX2kK/ELnIV2c3pfDs5\nHrmLPTO3UrBjQcoVKkd0oWjKFS5H+ULlqVCkAhUKV6BCkQpUKlKJIvmSG18WHIYNG8awYcMyrTx/\nME3+EY6aIDx1mSb/kAwExg6qsRCRj4E2QEkR2YobCJMbQFXfUtVpItJVRDbgBn719fad9gbAzMS5\nzo5R1UwJcy0ChQq5pWrVs1txLuRRJA5MTUhwBmXTJti4Ef74Azash99/h8NLhnJ6+f3ohds5U207\nf1aM50SpeNYXWsIhJrP18BY2H9xMrohcxBSNIaZoDFWKVTm7VC1WlcrFKpMn8h/u8IZhGCEhqMZC\nVZOtDSRJc3cK26fjRuyGJRERUKaMW5o3P3ffsGHCAw8U47ffirF2bV3WrIHV38CqVRAfD9WrQ48G\nSrV6+ylVejP5ozeyP2Ejq/esZupvU/l9/+9sPbSV6ELRVCtejZolalKjRA1qlqhJzZI1qVikIhES\nDt1NhmHkFELdDJUtiY2NpUgRaNrULb4cPw6rV8OKFcLy5SWYPb0ES5deRKFC0LgxtLoI7m8KjRqf\n4kiuzfy27zfW71vP2r1rmbJuCmv3ruXAXweoWaImtUvVpk7JOlxY+kLqlq5L5aKViYyITFFTuGGa\n/CMcNUF46jJNwSOoI7iDjYhoVtafiKprxlqyBBYvhkWL4JdfoFQpaNYMWrZ0S/36kCsXHDpxiLV7\n17J6z2pW71nNqj2rWLl7JXuP7aVOqTrUL12f+he4pUGZBhTPXzzUp2gYRhghIunu4DZjEaYkJMDa\ntbBgAcybB3PnwubNrqZyySVuadECCvoE2j504hArd69kxa4V/LrrV5btWsaKXSsonr84Dcs0pFGZ\nRjQu25iLyl5EdKHoDHVyGUawsPsxOCT3jjRjkc05eNAZjR9/dMuyZVCvHrRt65ZWraBAgXOPSdAE\n/jjwB0t3LGXJjiUs2bmExdsXkysiF02im9CsXDOaRjelabmmlCyQ6nQChhFUvBdYqGVkK1K6pmYs\nchjHj7tax6xZblm2zPV7XHaZWxo3ds1WSVFVtvy5hV+2/8Ki7YtYtH0Ri7cvpkSBEjQv35yLy11M\n8/LNaVimoXlkGZmGGYvAY8bCI6cbi6QcPQpz5sC337olPh46dIAuXaBTJyhXLuVjEzSBdXvXMT9+\nPvPj5zMvfh5/HPiDi8peRMsKLWlVoRUtK7SkRIH0TA5nGP5jxiLwmLHwMGOROjt2wMyZMGOGMx7l\ny8MVV7ilWTOITN5x6iyHThxi4baFzN06l5+2/MT8+PlUKFKBSypewiUVL6FNTBvKFy6feiaG4Sdm\nLAKPGQsPMxb+c+YMzJ8PX33lll274PLLoUcP12SVtK8jOU4nnGb5zuX8uOVH5myew5zNcyictzBt\nYtrQNqYtbWPaUqFIhbQzMoxkyInG4s4776RcuXIMGTIk7cQpEBcXR+/evdm6des/9pmx8DBjkXE2\nbYKpU+HLL52rbrt20LMndOsGxYr5l0eCJrBmzxriNsURtzmOWRtnUSx/MdrFtKN9lfa0q9zOOs0N\nvwl3Y/HRRx8xcuRI1q1bR6FChWjYsCGPPfYYrVq1CqkuMxZ+YMYiMOzfD19/DV98AT/84Fxyr77a\nGY+S6XjXJ2gCK3ev5IeNP/D9xu+Zs3kOVYpVoUPlDnSq1onWFVuTL1e+4J2IkaUJZ2MxcuRInn/+\ned566y06depEnjx5mDFjBnPmzOH550M7iWdmGQtUNcsuTr4RSA4fVv3kE9VevVQLF1bt1El17FjV\nAwfSn9fJ0yf1p80/6dBZQ7XFuy006pko7TS+k46cO1LX7FmjCQkJgT8BI8sSrs/zwYMHNSoqSidO\nnJjs/r/++kvvu+8+jY6O1ujoaL3//vv1xIkTqqo6a9YsLVeunL700ktaunRpLVu2rI4bN+7ssbfe\neqsOGTLk7PqXX36pDRo00MKFC2vVqlV1xowZqqo6duxYrV27thYqVEirVKmib7311tljZs2apeXL\nl09WW0rX1Nuevvdteg8IpyVcb67swuHDqhMmqPbs6QxHjx6qn36qeuxYxvI7cPyATlw1UQdMGaDl\nR5bXmJdj9I6pd+iUtVP0yIkjgRVvZDnC9XmePn265sqVS8+cOZPs/scff1xbtGihe/bs0T179mjL\nli318ccfV1X3Is+VK5cOHTpUT58+rdOmTdMCBQrowYMHVVW1T58+Z9MuWLBAixQpot99952qqm7b\ntk3Xrl2rqqpff/21/vHHH6qqOnv2bC1QoIAuWbLkbBlmLMxYhA0HD7oaRvv2qkWLqvbtqzprlmoK\nz0+aJCQk6MpdK3XEzyM09r1YjXomSjt/0Flfnf+qbjywMZDSjSxCWs+zC4xz/kt6+eCDD7RMmTIp\n7q9atapOnz797PrMmTM1JiZGVd2LPH/+/OcYmtKlS+uCBQtU9Vxjcfvtt+ugQYP80tSjRw995ZVX\nzpaRGcbCQpcaflGkCPTtC99956Ln1q0L990HlSvDY4/B+vXpy09EqFu6Lv9q+S9m3TqL+Afi6d+o\nP4t3LKbpO02p/2Z9Hvv+MRbELyBBE4JzUkaWIlDmIr2UKFGCvXv3kpCQ/H24fft2KlWqdHa9YsWK\nbN++/ZzjIyL+ftUWKFCAI0eO/COf+Ph4qv49L8I5TJ8+nebNm1OiRAmKFSvGtGnT2LdvX/pP5jww\nY2Gkm+hoePBBWL4cpkyBv/6C1q1dvKpx49zkUemlSL4iXFPnGt7r8R47H9zJf6/4L2f0DH0m96H8\nyPLc+dWdzNwwk5NnTgb+hAwjFVq0aEHevHmZNGlSsvujo6PZtGnT2fUtW7YQHR2d7nIqVKjAhg0b\n/rH9xIkTXH311Tz00EPs3r2bAwcO0LVr18TWlUzDjIVxXjRoAC+95EaLP/igc8WtUAEGDHAuuRm5\nnyMjImlZoSXPdXiONXetIa5PHFWKVeHJ2U9S5sUy3PzFzXyx5guOnjwa+BMyjCQUKVKE4cOHc9dd\ndzF58mSOHTvGqVOnmD59Og8//DA33HADTz/9NHv37mXv3r0MHz6c3r17+5V3YhMPQP/+/Rk3bhw/\n/PADCQkJbNu2jXXr1nHy5ElOnjxJyZIliYiIYPr06XzzzTfBPOVkMWNhBITcud0Av8mT3XwdVarA\n9ddDo0bwxhtw6FDG865Rogb/bvVv5vafy6r/W0WrCq1485c3KftSWa7+9Go+/vVjDp84HLiTMYwk\nDBo0iJEjR/L0009TunRpKlasyBtvvEHPnj0ZMmQITZo0oX79+tSvX58mTZqcM8gutWi6InJ2f9Om\nTRk3bhwPPPAARYsWJTY2li1btlCoUCFeffVVrr32WooXL87HH39M9+7d/5FPsLFxFkbQSEhwAQ7f\nesuFG7n2WrjjDmdAAsG+Y/uYsm4Kn63+jJ+3/ky7yu24ts61XFnzSqLyRAWmECPTCOdxFlkVG5Tn\nYcYi67BjB4wZA2+/7QIa3nMPXHMN5AlQUNsDxw8wed1kPln1CXO3zqVj1Y5cX/d6ulbvSv7c+QNT\niBFUzFgEnixjLESkM/AyEAm8q6rPJ9lfDBgLVAH+Avqp6ipv32DgZiAB+BXoq6onkhxvxiKLcfq0\ni001erTzqrr9dlfbKFs2cGXsO7aPSWsn8fHKj1myYwnda3bnhgtvoH2V9uSKsJmEwxUzFoEnSxgL\nEYkE1gEdgG3AIuAGVV3jk2YEcEhVnxKRmsDrqtpBRGKAH4DaqnpCRD4Bpqnq+0nKMGORhVm92hmN\njz92kXDvv9/NwRFIdhzewaerPuWjlR+x6eAmrq97PTfVv4mm0U1tZrYww4xF4AmksQhmB3czYIOq\nblLVU8AEoHuSNLWBWQCqug6IEZFSwCHgFFBARHIBBXAGx8hG1KnjOr//+MPNL37VVc79dtIkFyU3\nEJQtVJb7mt/HgtsW8HO/nymevzg3fXETNUfX5KnZT7Hp4KbAFGQY2ZxgGotygG9kq3hvmy/LgasA\nRKQZUAkor6r7gZeALcB24KCqfhdErUYIKVYM/v1v+P1315fx3HNQq5YzJMeOBa6casWrMTR2KL/d\n/Rvje45n19FdNH2nKbHvxTJ26VjzqDKMVAimsfCnPvkcUFRElgJ3A0uBMyJSFbgfiAGigSgRuSlY\nQo3wIFcu5zE1f74b3PfNNxATA08+CYEcrCoiXFz+YkZ3Hc22Qdu4v/n9TFk3hQqjKnDLpFuYtXGW\njRo3jCQEs7dvG+A7E04FXO3iLKp6GOiXuC4iG4E/gMuBuaq6z9v+BdAS+DBpIcOGDTv7OzY2ltjY\n2EDpN0KEiBsR3ro1rFsHI0ZA9epw881u4J9PZIXzJk9kHnrU6kGPWj3Yc3QPH/76IffPvJ8///qT\nvg370rdRXyoWqRi4Ag0jBMTFxREXF3deeQSzgzsXroO7Pa4paSH/7OAuAhxX1ZMiMgBopap9RKQh\n8AHQFOcl9R6wUFVfT1KGdXDnELZvh5dfdu633brBI49AzZrBK2/JjiWMWTKGCasm0CS6Cbc1uo3u\ntbqTJzJAvr7GP7AO7sCTJbyhAESkC3+7zo5R1WdFZCCAqr4lIi1whkCBlUB/Vf3TO/Yh4Fac6+wS\n4Davo9w3fzMWOYz9+50H1ejR0LatC2JYv37wyjt+6jhfrPmCd5e+y+o9q7ml/i0MaDyAGiVqBK/Q\nHIoZi8Bjkx9ZiPIcz+HDqiNGqJYp4+bb8EL7B5Xf9v6mD33zkF4w4gKNfS9WJ/w6QU+cPhH8gnMI\n4fo8nzhxQvv166eVKlXSQoUKacOGDc+GJJ81a5aKiEZFRWlUVJSWL19er732Wl20aFGa+S5YsEC7\ndOmiRYsW1eLFi2uzZs3OTox0Pvn6ktI1xUKUGzmFqCj417+cB1WbNm6cRrdusHhx8MqsXqI6z1/2\nPFse2ML/Nfk/3l7yNhVGVeCR7x5h44GNwSvYCCmnT5+mYsWKzJkzh0OHDvH0009z7bXXsnnzZgDK\nlSvH4cOHOXz4MPPnz6dWrVpccskl/PDDDynmOW/ePNq3b0/btm35/fff2bdvH2+++SYzZsw4myYj\n+QaV9FqXcFoI0y8RI/M5flz11VdVo6NVu3dXXbo0c8pdt3edDpoxSEs8X0Iv//By/WrdV3r6zOnM\nKTybkZWe5/r16+sXX3yR4sRDd999tzZp0iTF41u1aqV33313ivszmm9SUrqmWM3CyKnky+fGaGzY\n4PoyunZ1sadWrQpuuTVK1OClTi+x9YGtXFPnGp6c/STVX6vOi3NfZP/x/cEt3AgJu3bt4rfffqNu\n3boppunZsydLlizh+PHj/9h37Ngx5s+fzzXXXJPuslPLN9ik6TorIuNVtXda2wwjHMif383gN2CA\nG9TXrh107AjDhkEKk5AFptzc+enTsA99GvZh4baFvL7odaq+WpWra1/N3c3upmGZhsErPIcgTwYm\nPIsOzXgn+qlTp7jpppvo06cPNWrUOGdGPF+io6NRVQ4ePEj+/OcGsjxw4AAJCQmUzUBAtNTyDTb+\njLO40HfFc4kNcAQfwwgsBQq4Po3bb3cutxdf7GoaTzzhZvoLJs3KNaNZuWbsPrqbdxa/wxUfXUHV\n4lW5t9m9dK/V3YIZZpDzeckHgoSEBHr37k2+fPkYPXp0qmm3bduGiFC0aFGeeeYZnn32WQB69+7N\nSy+9REREBDt27KBGjfR51fnmm9mk2AwlIo+KyGGgnogcTlyA3cCUTFNoGOdB4cLOQKxb537XqweD\nB8PBg8Evu3TB0jx26WNsvG8jdzW9i5HzR1Lt1Wq8OPdFDv6VCQKMgKGq9O/fnz179vD5558TGRmZ\navpJkybRuHFj8ufPz6OPPnq2o/qNN94gf/78tGjRgokTJ6Zbh2++mU5anRrAc+ntCMmshSzUIWaE\nB1u3qvbvr1qqlHO9PX48c8tftG2R3vT5TVrsuWJ6z7R7dP2+9ZkrIIwJ5+d54MCB2rx5cz1y5Mg5\n2307ohMSEjQ+Pl6HDRum+fLl02+//TbF/ObOnatRUVE6YsQI3bt3r6qqLlu2TK+//vrzyjcpKV1T\nMtDB7e9LuRwu3MaliUt6CwrGEs43lxHerF7tvKYqVVIdP171zJnMLT/+z3gd/N1gLflCSe0xoYf+\ntPknTUhIyFwRYUa4Ps+bNm1SEdH8+fOfHfcQFRWlH330kcbFxWlERIRGRUVpwYIFNTo6Wnv16qUL\nFixIM9+FCxdqly5dtEiRIlq8eHG9+OKLdfz48arqjEVG8/UlkMYizRHcIvI8cB2wGjgbOFpVrwxk\nDScj2Ahu43z58UcX8fbkSXjxRdchnpkcPXmU95a9x6j5oyhZoCQPtniQq2pfRWRE6s0c2REbwR14\nMjXch4j8BtTTJLPUhQNmLIxAoAoTJ8LDD8OFF8ILL7gQ6ZnJmYQzTFk3hRFzR7D76G4ebPEgfRr2\nyVFTwpqxCDyZPfnR74BFTzOyLSLQqxesWQOXXuqi3d5zT2DDoqdFZEQkPWv3ZG7/ubzf431m/j6T\nmFdiGD57uI3XMMICf4zFcWCZiLwtIq95y6vBFmYYmU3evM7ddu1aSEiA2rXhtdfg1Km0jw0krSq2\n4svrv2R2n9lsPriZaq9W48GZDxJ/KD7tgw0jSPjTDNXH+5mYUHCdI+8nf0TmYc1QRjBZuRIeeAC2\nbXNjNTp2DI2O+EPxjJo3inHLxtGzVk8eaf0I1UtUD42YIGLNUIEn00OUi0gBoKKqrk1P5sHGjIUR\nbFRh6lSbumClAAAgAElEQVQYNMiN0XjpJahSJTRa9h/fz2sLXmP0otG0r9yewa0H06BMg9CICQJm\nLAJPpvZZiEg33HSnM7z1RiJig/KMHIGIi2a7ciU0a+aWxx8P7Nzg/lI8f3GGxg7lj3v/oGl0U7p8\n2IVuH3dj4baFmS/GyHH40wy1BGgHzFLVRt62lap6YaoHZgJWszAym/h452o7bx6MGgU9ejiDEgr+\nOv0XY5eO5fmfn6dWyVo8funjtK7YOjRiAoCE6kJmczLTdXaBql4sIkt9jMUKVQ3i/GT+YcbCCBWz\nZsFdd7n5wF991c0RHipOnjnJ+OXjeeanZ6hUpBJD2wylTUyb0Akywp5guc6uEpGbgFwiUl1EXgPm\nZkihYWQT2raF5cuhfXto0QKGDoW//gqNljyReeh/UX/W3rWWWxrcQv8p/WnzXhtmbZwVGkFGtsSf\nmkVB4DEg0RdkJvCUqobo0fgbq1kY4UB8PNx/PyxbBq+/Dp06hVbP6YTTfPTrRzw15ynKFSrHk7FP\nWk3DOIegeUNlFBHpDLwMRALvqurzSfYXA8YCVYC/gH6qusrbVxR4F6iLc9vtp6rzkxxvxsIIG6ZN\ng7vvhqZNnattBqYrCCinE07z4YoPGT5nOJWKVGJ42+FZuk/DCBwBNRYi8oqq3iciU5PZraraLQ0x\nkcA6oAOwDVgE3KCqa3zSjAAOqepTIlITeF1VO3j73gdmq+pYbw6Ngqr6Z5IyzFgYYcWxY/Cf/8Db\nb8NTT7n5NCJCPB/lqTOnGL9iPMNnD6dWyVoMbzucZuWahVaUEVICbSwaq+piEYlNZreq6uw0xLQA\nhqpqZ2/9Ee/A53zSfIULgf6Tt74BaAGcBJaqaqoe7WYsjHBl5UoYONCN03j7bRdzKtScPHOSMUvG\n8J8f/8NFZS/i6XZPU/+CkPupGCEgoB3cqrrY+/kL8KOqxqlqHPCjty0tygFbfdbjvW2+LAeuAhCR\nZkAloDxQGdgjIuNEZImIvOMNDDSMLMGFF7qItrfc4jrDn3gCToQ4FGeeyDzc2fRO1t+znrYxbek4\nviM3fn4j6/etD60wI0vgl+ss0F5Vj3jrhYCZqtoyjeOuBjqr6gBv/WbgYlW9xydNIeAVoBHwK1AL\nuA0XuHAe0FJVF4nIy7jmqieSlKFDhw49ux4bG0tsbKw/520Ymca2ba4vY+1aePddaNUq1IocR04e\n4ZX5rzBq/ih61urJ0NihlC9cPtSyjCAQFxdHXFzc2fUnn3wyKOMslqlqw7S2JXNcc2CYTzPUYCAh\naSd3kmM2AvWAKGCeqlb2trcGHlHVK5Kkt2YoI8vwxRcumm3PnvDss1CoUKgVOfYf388LP7/AO0ve\noX+j/jzS+hGK5y8eallGEAnWOIujItLYp5AmuEi0afELUF1EYkQkD24CpXPChIhIEW8fIjIA16F9\nRFV3AltFJHE28w7AKj/KNIyw5aqrXF/GsWMuztS334ZakaN4/uI81+E5fr3zVw6fOEzN0TV55sdn\nOHryaKilGWGEPzWLpsAEYIe3qSxwnaqm2W8hIl3423V2jKo+KyIDAVT1La8T/D2ca+xKoH+ix5OI\nNMC5zubBzanR17yhjOzCN984T6l27WDkSChaNNSK/mb9vvUMmTWEn7b8xNA2Q+nXqB+5InKFWpYR\nQIIZdTYPUBP3Ul+nqpkc4T95zFgYWZnDh+GRR2DKFOcx1aVLqBWdy6Jti3j4u4fZfng7z7Z/lh61\nelj8pmxCoF1n26vq915HteLmscD7jap+cT5iA4EZCyM78MMP0L+/85oKt1qGqjLz95k89O1DFMlX\nhBGXjaB5+eahlmWcJ4Hus7jU+3ult1zhLYnrhmEEgHbtYMUKyJcP6td3TVThgojQuVpnlg5cSr+G\n/ej1WS96fdaL3/f/HmppRiaTWs3iflV9WURaJw6aCzesZmFkN777ztUyunaFESMgKirUis7l2Klj\nvDz/ZUbOG8ktDW5hyKVDzHMqCxLomkVf7+9rGZdkGEZ66NDB1TJOnIAGDdzAvnCiQO4CPHrJo6z6\nv1UcO3WMWqNr8fL8lzl55mSopRlBJrWaxcdAE9yo66R1TrX5LAwjuEyZAnfcAb17w/DhkDdvqBX9\nk9V7VvOvb/7Fhv0beLHji1xZ40rrBM8CBNwbSkTK4EKSd+PvDm4AVHVTBjQGFDMWRnZnzx7nYvvH\nH/DBB258Rjgyc8NMBn0ziDJRZRjZcWS2mhs8OxLQZigR+d4bHDdTVTer6ibf5XzFGoaRNqVKuZHf\n99//95iMhIRQq/onnap1Yvkdy7m69tV0/KAjA6cOZM/RPaGWZQSQ1PosyopIK6CbiFwkIo29vxeJ\nyEWZJdAwcjoi0LcvLFwIn38OHTu6eFPhRq6IXPxf0/9j7V1ryZ87P3XeqMNLc1+y/oxsQmp9Fr2A\n/kArkokyq6ptgystbawZyshpnD7t4kqNHu1m5bvmmlArSpm1e9fywMwH2HhgIy93fpnO1TqHWpLh\nEZQR3CLyhKoOPy9lQcKMhZFTWbAAbroJ2rSBV14JPxfbRFSVr9d/zQMzH6B2ydqM7DSSasWrhVpW\njidYgQSfFpHeIvKEV0hFb+4JwzBCxMUXw9KlcOYMNG4MixenfUwoEBGuqHEFK+9cSasKrWj+bnMe\n/f5RC1KYBfHHWLyBm73uRm/9iLfNMIwQUqgQvPceDBsGnTvDiy+GZ+c3QN5ceXm49cOsuHMFW/7c\nQu3Xa/Ppqk+xloGsgz/NUEtVtVHiX2/bclUNuW+cNUMZhmPTJrjxRihcGN5/Hy64INSKUmfO5jnc\nM/0eSuQvweiuo6lTqk6oJeUogtUMdVJEIn0KKQWE6feLYeRMYmJg9my46CJo1MiFDQlnLq10KYtv\nX0zPWj1p814b/v3Nvzl84nCoZRmp4I+xeA2YBJQWkWeAn4Fng6rKMIx0kzs3PPMMjB8Pt94Kjz7q\nvKfClVwRubjn4ntYeedK9hzbQ5036ljTVBjj73wWtYH23ur3qromqKr8xJqhDCN5du92YUKOHYOP\nP4byWWBq7Z+2/MSdX99J2aiyjO46mholaqR9kJEhgtUMBZAXF+5DcDPXGYYRxpQuDdOnw+WXQ5Mm\nMG1aqBWlTeuKrVly+xI6V+tMyzEteWLWExw/5c8MzkZmkKaxEJH7gA+AUkBp4AMRuTfYwgzDOD8i\nItxMfBMnuoCEDz8Mp8JijsuUyR2Zm0EtBrHsjmWs2buGem/W45vfw2iCjxyMP95QvwLNVfWot14Q\nmK+qIQ9pZs1QhuEfe/e6ZqkjR2DCBChXLtSK/GPa+mncPe1umpVrxqhOoyhbqGyoJWULgtkMlZDC\n77QEdRaRtSKyXkQeTmZ/MRGZJCLLRWSBiNRNsj9SRJaKyFR/yzQM45+ULAlff+3m+W7SJLxm40uN\nrtW7svL/VlKlWBXq/7c+byx6gwQ1Z8xQ4E/NYhDQB/gC12fRA3hPVUelcVwksA7oAGwDFgE3+HaO\ni8gI4JCqPiUiNYHXVbVDkrIbA4VUtVsyZVjNwjDSSVycCxVy++3w+OOuuSorsGr3KgZ+NZAzeoa3\nr3ibeheEvHEjyxKUmoWqjsTNmncA2Af0SctQeDQDNnghzU8BE4DuSdLUBmZ55awDYrxxHIhIeaAr\n8C5J5tIwDCPjxMbCL7/A99+76Vv37g21Iv+oW7ouc/rOoV/DfrT/X3sGfzfYOsAzEX86uJsD61X1\nFVV9FfhdRC72I+9ywFaf9Xhvmy/Lgau8cpoBlYBEJ79RwL+xAYCGEXDKlnXGol49F1tq4cJQK/KP\nCIlgQOMBrLhzBRsPbqTem/X4/o/vQy0rR5DLjzT/BRr5rB9NZlty+NM+9BzwiogsBX4FlgIJInIF\nsFtVl4pIbGoZDBs27Ozv2NhYYmNTTW4Yhkfu3DBiBLRo4Vxsn37aNU1lhVlRy0SVYcI1E/j6t6/p\nN6UfbWPa8lLHlyhRoESopYUlcXFxxMXFnVce/vRZLFPVhkm2rUhrDm6vRjJMVTt764OBBFV9PpVj\nNgL1gcFAb+A0kA8oDHyuqrckSW99FoYRAH77DXr2hGbN4I03IH/+UCvyn8MnDjPkhyF8uvpTRnUa\nxXV1r7N5wNMgWPNZTML1K7yJ6zu4E2irqj3SOC4XroO7PbAdWMg/O7iLAMdV9aSIDABaqWqfJPm0\nAf6lqlcmU4YZC8MIEEeOwG23wfr1bka+mJhQK0of87bO47apt1GlWBXevPxNyhfOAsPWQ0SwXGfv\nwM2Wtw3X79AcuD2tg1T1NHA3MBNYDXyiqmtEZKCIDPSS1QF+FZG1QCfgvpSy80OnYRjnQVSUCw1y\n883QvHn4ByNMSosKLVhy+xIal21Mw/825L+//NfcbAOIX7GhwhWrWRhGcIiLgxtugAcfdEtWa9VZ\ntXsV/ab0o0DuArx75btULV411JLCimAOyjMMIwcRG+umbp0wwRmNo1lsYru6pesyt99crqxxJc3H\nNGfUvFGcSTgTallZGqtZGIaRIsePw513uilcv/wSKlcOtaL0s2H/Bm6bchsnz5xkbPex1CpZK9SS\nQo7VLAzDCCj588O4cdC/v3Ox/eGHUCtKP9WKV+OHW3/g5vo3c8m4S3jh5xc4nRDGE32EKf54Q90P\njAMO4UZTXwQ8oqozgy8vdaxmYRiZxw8/uKlbBw+Ge+/Nev0YABsPbOS2qbdx5OQRxnUfl2Oncw1W\nzaKfqv4JdASK48Y/PJcBfYZhZGHatYN582DsWOdie+JEqBWln8rFKvNd7+/o27Avl467lBd+fsH6\nMvzEH2ORaH0uB8ar6sog6jEMI4ypXBl+/hkOHnTGY+fOUCtKPyLCHU3uYNGARczYMINWY1uxdu/a\nUMsKe/wxFotF5BtcUL+ZIlIYi9dkGDmWqCj47DO47DI34nvJklAryhiVi1Xmu1u+o3f93rQe25pR\n80bZuIxU8KfPIgIXB+p3VT0oIiWAcqq6IjMEpob1WRhGaJk40XlLvfkmXHNNqNVknA37N9B3cl8i\nJIJx3cdRpViVUEsKKsHqs2gBrPMMRW9gCPBnRgQahpG9uOYamDkTBg2C4cMhq367VStejbhb4+he\nszvN3mnGW7+8hX2Inou/06rW95b3cB5R16pqm6CrSwOrWRhGeLBjB/ToAVWquA7wrBSIMClr9qyh\n96TelCpYijHdxhBdKDrUkgJOsGoWp703cg/cTHavA4UyItAwjOxJ2bIuRIgItGmTNTu+E6ldqjbz\n+s+jebnmNHqrEZ+s/CTUksICf2oWc4AZuNnyLgH2AMtUNeRzGlrNwjDCC1V46ikYMwamToX6qU5k\nEP78sv0Xek/qTaMyjXi96+sUy18s1JICQrBqFtcBJ3DjLXbiZrsbkQF9hmFkc0TgiSfg+eehfXv4\n+utQKzo/mkQ3YfHtiylZoCQN/tuA7/7IYqF4A4hfsaFEpAzQFBcqfKGq7g62MH+wmoVhhC/z58NV\nV8Ejj7gR31mdb37/hn6T+3F17at5rsNz5M+ddTtmglKzEJFrgQVAL+BaYKGI9MqYRMMwcgrNm8Pc\nufDWW85YnMniA6U7Vu3IijtXsPPoTpq804RlO5eFWlKm4k+fxQqgQ2JtQkRKAd+nNa1qZmA1C8MI\nfw4ehF69IG9eF/I8KirUis4PVeWDFR8w6JtBPNTyIR5s+SARkrVisgarz0JwndqJ7OPvECCGYRip\nUrQoTJvmPKYuuQS2bQu1ovNDROjdoDeLBixiym9T6PC/DsQfig+1rKDjj7GYgQvz0UdE+gLTgOnB\nlWUYRnYid254+224/noX6vzXX0Ot6PyJKRpD3K1xdKjSgcZvN+bz1Z+HWlJQ8acZSoCrgNa4Du4f\nVXVSJmhLE2uGMoysx4QJrg/jww9dfKnswMJtC7nx8xtpU6kNr3R5hag84d3WFpRmKHV8rqoPqOqg\n9BoKEeksImtFZL2IPJzM/mIiMklElovIAhGp622vICKzRGSViKwUkWzgT2EYxvXXw+efQ+/ebmKl\n7ECzcs1YOnApinLRWxfxy/ZfQi0p4KRYsxCRI7iaRHKoqhZOM3ORSGAd0AHYBiwCblDVNT5pRgCH\nVPUpEamJGyXewXPXLaOqy0QkClgM9EhyrNUsDCOLsm4ddOkCt9wCQ4dmzcmUkuOTlZ9wz/R7+HfL\nf4dt53dAaxaqGqWqhVJY0jQUHs2ADaq6SVVPAROA7knS1AZmeWWuA2JEpJSq7lTVZd72I8AaIPsF\naTGMHErNmm4ypa++ctO2njoVakWB4boLr2PRgEVMXjeZTh90YsfhHaGWFBCCbfLKAVt91uO9bb4s\nx/WJICLNgEpAed8EIhKDC5O+IEg6DcMIARdc4GJK7doFV14Jhw+HWlFgqFS0EnF94mhVoRUXvX0R\n09dnfZ+gXEHO3582oueAV0RkKfArsBQ4O3zHa4KaCNzn1TDOYdiwYWd/x8bGEhsbe36KDcPIVKKi\nYPJk+L//c0EIp02DMmVCrer8yRWRi2Gxw2hXuR03f3Ez19S5hmfbP0veXHkzXUtcXBxxcXHnlYdf\n4T4ynLlIc2CYqnb21gcDCar6fCrHbATqqeoREckNfAVMV9WXk0lrfRaGkU1IDEL4/vswYwZUrx5q\nRYFj37F99J/Sn62HtjLh6glULxHakwtWuI97RSSjoRZ/AaqLSIyI5MEFJZySJP8i3j5EZAAw2zMU\nAowBVidnKAzDyF4kBiEcPBguvRQWLgy1osBRokAJJl03iX4N+9FybEs+XPFhqCWlG3/GWfwH95Jf\nAowFZqbnc15EugAvA5HAGFV9VkQGAqjqWyLSAjepkgIrgf6q+qeItAbmACv4uzlrsKrO8MnbahaG\nkQ2ZOtV1er//vvOYyk4s27mM6yZeR6sKrXity2sUzFMw0zVkpGbhb9TZCKAj0AdoAnyKe/H/ngGd\nAcOMhWFkX+bNg5494YUXnHttduLIySPcNe0uFm5byKfXfEq9CzJ3eqBgxYZCVROAncAuXOdzMWCi\nN0bCMAwj4LRoAbNmweOPw4svhlpNYInKE8X7Pd7nkVaP0O5/7Xh3ybthP+e3P81Q9wG34AIIvgtM\nUtVTXm1jvapWDb7MFLVZzcIwsjnx8dCpk2uOeuEFiAi/MW7nxeo9q7lu4nXUK12Pt654i0J5gz9r\ndbBqFsWBq1S1o6p+6g2uS6xtXJkBnYZhGH5Tvjz8+KNrlurbN/sM3kukTqk6LLhtAQVzF6Tx241Z\nvnN5qCUliz/GoqqqbvbdICLjAVR1dVBUGYZh+FC8OHz7LezZ42bfO3481IoCS4HcBXin2zs80eYJ\nOozvwDuL3wm7Zil/mqGWqmojn/VcwApVrRNscWlhzVCGkbM4dcrVLjZvdh5TRYuGWlHgWbNnDb0+\n60XDMg357xX/DUoE24A2Q4nIoyJyGKgnIocTF2A3ScZKGIZhZAa5c8P//gcXXeRGe+/cGWpFgad2\nqdosHLCQ3JG5afZOM1bvCY8GHH9qFs+p6iOZpCddWM3CMHImiaO9x493zVMxMaFWFBzGLR3HQ989\nxKhOo7i5/s0Byzeg4yxEpJaqrhWRxiQT40lVl2RMZuAwY2EYOZvXXnMeUjNnQp2QN4wHhxW7VnDN\np9fQNqYtr3R5hXy58p13noE2Fu+o6gARiSN5Y9E2QyoDiBkLwzA++AD+9S/Xh9G0aajVBIdDJw7R\nf0p//jjwBxN7TaRyscrnlV/AR3B7YylaqOrP56UsSJixMAwD/g4P8tlnri8jO6KqvLrgVZ756Rne\nvfJdrqyZ8ZELQQn3ISLLVLVhhlUFETMWhmEkMmsWXHcdvPcedO0aajXBY+7WuVw38Tp61+/N8LbD\nyRWR/pkmgmUsXgTmA5+H25vZjIVhGL4sWADdusGrrzrDkV3ZfXQ3N3x+A4Lw8dUfU6pgqXQdH6wR\n3HfgAgee9HGhPZQuZYZhGJnAxRc776gHHoAxY0KtJniULliamTfPpGl0Uxq/3ZgF8cGfRDSokx8F\nG6tZGIaRHOvXQ4cO8OCDcO+9oVYTXCavncyAqQN4MvZJ7mhyB24qoNQJZojyYkB14KzPlqrOSU9B\nwcCMhWEYKbF5M7Rv7zq+Bw8OtZrgsmH/Bnp+0pPGZRvz5uVvkj93/lTTB2umvAG4SYi+AZ4EZgLD\n0lOIYRhGZlOpEsyZ41xrH3vMDeTLrlQrXo35/edz8sxJWo1txcYDGwNehj99FvcBzYBN3tiKRsCf\nAVdiGIYRYKKjIS4Opk+HQYOyt8EomKcgH171Ibc2uJXmY5rz277fApq/P95Qv6hqExFZBjRX1b9E\nZLUFEjQMI6tw4ICbD6NRI3j99ew3J0ZSlu9cTr0L6hEhyZ9osLyhtnp9Fl8C34rIFGBTegoxDMMI\nJcWKwTffwMqVrg/jzJlQKwouDco0SNFQZJR0eUOJSCxQGJihqif9SN8ZeBmIBN5V1eeT7C8GjAWq\nAH8B/VR1lT/HemmsZmEYht8cPQrdu0OpUi4IYa70j2fLFgQ6NlTx1A5U1f1piIkE1gEdgG3AIuAG\nVV3jk2YEcEhVnxKRmsDrqtrBn2O9481YGIaRLo4fh6uvhgIF4OOPXdjznEagm6GWAItTWdKiGbBB\nVTd5U7FOALonSVMbmAWgquuAGBEp7eexhmEY6SZ/fpg0CU6ehF694MSJUCvKGqRoLFQ1RlUrp7T4\nkXc5YKvPery3zZflwFUAItIMqASU9/NYwzCMDJE3L0ycCJGRbprWv/4KtaLwJ80WOxG5NLntfgzK\n86d96DngFRFZCvwKLAXO+HksAMOGDTv7OzY2ltjYWH8PNQwjB5MnD0yYAL17u3hSkye7Wkd2JC4u\njri4uPPKwx/X2a/4++WdD9dEtFhV26VxXHNgmKp29tYHAwnJdVT7HLMRqAdc6M+x1mdhGMb5cvo0\n3Hor7NoFU6a4vozsTlBcZ1X1ClW90lsuw73ID/qR9y9AdRGJEZE8wHUkmbtbRIp4+xJHis9W1SP+\nHGsYhhEIcuVy83qXLQtXXOE8pox/khFH3Hhcx3SqqOpp4G5ceJDVwCequkZEBorIQC9ZHeBXEVkL\ndMKNFk/x2AxoNQzDSJPISDcPRsWKcPnlcORIqBWFH/40Q73msxoBNAQ2qmrgZg/PINYMZRhGIDlz\nBgYMgN9/h2nToGDBUCsKDsGa/KiPz+ppXIyon9IvL/CYsTAMI9AkJMBtt2VvgxG0EOXhihkLwzCC\nQXY3GMGqWfyK84byzfhP3Kjqp1V1X3qFBgozFoZhBIvsbDCCZSxG4JqfPsIZjOuBAsBOoJWqXpkx\nueePGQvDMIJJosHYuBG+/jr7uNUGy1gsVdVGyW0TkV9VtV4GtAYEMxaGYQSbM2egXz+Ij4epU7OH\nwQhWiPJIEbnYp5BmPsedTk9hhmEYWY3ISBg71o3D6N7dBSLMifhTs2gKjAOivE2Hgf7AKuByVf00\nqApT12Y1C8MwMoXTp11okAMH4MsvIV++UCvKOEH1hhKRIgCqGjZTqpqxMAwjMzl9Gm68EY4dg88/\ndwEJsyLB6rPIB1wNxPB34EFV1eEZERlIzFgYhpHZnDoF117r5vP+7LOsOR9GsPosJgPdgFPAEW+x\n6CmGYeRIcueGTz75u5ZxOof03PpTs1ipqhdmkp50YTULwzBCxV9/QY8eULy4m6I1MjLUivwnWDWL\nuSJSP4OaDMMwsiX58rkZ93btcvGkEhJCrSi4+FOzWANUAzYCiRMQqqqG3IBYzcIwjFBz9Ch07gz1\n6sHrr4Ok63s9NASrgzsmue2quik9BQUDMxaGYYQDhw7BZZdBq1bw0kvhbzCCNfnRJs8wHAMSfBbD\nMAwDKFwYZsyAuDgYMiTUaoJDmsZCRLqJyHpcM9RsYBMwPci6DMMwshTFisE337gBe888E2o1gcef\nDu6ngRbAb6paGWgPLAiqKsMwjCxIyZLw3Xcwbhy88kqo1QSWXGkn4ZSq7hWRCBGJVNVZIpLNLoNh\nGEZgKFsWvv8eLr3UhTW/7bZQKwoM/hiLAyJSCPgR+FBEduMG5hmGYRjJULGiq2HExrootTfeGGpF\n548/zVDdcZ3bDwAzgA2AX3NYiEhnEVkrIutF5OFk9pcUkRkiskxEVvpO4Soig0VklYj8KiIfiUgW\njcJiGEZOpFo1mDkTBg2CyZNDreb8Cdq0qiISCawDOgDbcDPr3aCqa3zSDAPyqupgESnppb8AKA/8\nANRW1RMi8gkwTVXfT1KGuc4ahhHWLF4MXbrARx9Bhw6hVuMI1gjujNIM2OC53p4CJuBqKb7sAAp7\nvwsD+1T1NHAIF4uqgIjkws3Mty2IWg3DMIJC48YuQu2NN8LcuaFWk3GCaSzKAVt91uO9bb68A9QV\nke3AcuA+AFXdD7wEbAG2AwdV9bsgajUMwwgal1zi4kf17AnLloVaTcZIs4NbRDoAP6tqeueH8qd9\n6FFgmarGikhV4FsvDtUFwP24sOh/Ap+JyE2q+mHSDIYNG3b2d2xsLLGxsemUaRiGEXw6dYI33oCu\nXd3gvRo1Mq/suLg44uLizisPf8J9/A9oDhwA5njLT6p6II3jmgPDVLWztz4YSFDV533STAP+o6o/\ne+vfA48AlYGOqnqbt7030FxV70pShvVZGIaRpRg3DoYNgx9/dF5ToSBY4T5uUdUaQE9cs9LrwB4/\n8v4FqC4iMSKSB7gOmJIkzVpcBzgicgFQE/gd19HdXETyi4h4aVb7d0qGYRjhS9++8MADrrN7165Q\nq/Eff5qhegOtgfo4IzEa+Cmt41T1tIjcDcwEIoExqrpGRAZ6+98CngHGichynOF6yOuv2O/VaH7B\nxaFaArydgfMzDMMIO+6/383l3amTa5IqWjTUitLGn2aofbiv/TeBOFXdmBnC/MGaoQzDyKqown33\nwdKlbjxGgQKZV3awQpQLUBe4xFuq4eJE3ZxRoYHCjIVhGFmZhAS49VbYv98FIMys+byDNc6iEFAR\nqOeX3uUAABJVSURBVITzTiqKhSg3DMM4byIiYOxY97dPn/Cebc+fmsUK4GdcbKg5qhqfGcL8wWoW\nhmFkB44fd7Pt1a8Pr74a/MmTgtIM5ZN5Idx0qmETRNCMhWEY2YU//3SBB3v2hCeeCG5ZQWmGEpF6\nIrIUWAWsFpHFInJhRkUahmEY/6RIETfb3v/+5wbvhRv+hCh/GxikqrMARCTW29YyiLoMwzByHBdc\n4Gbbu/RSKF4crr8+1Ir+xh9jUSDRUACoapyIFAyiJsMwjBxLlSowbRpcdpkzGB07hlqRwx9vqI0i\n8rg3EruyiAwB/gi2MMMwjJxK/fouUu1NN8GiRaFW4/DHWPQDSgNfAJ8DpbxthmEYRpBo3RrGjIFu\n3WDdulCrCeLkR5mBeUMZhpHdGTsWnnoKfv4ZoqMDk2dGvKFS7LMQkampHKeq2i09BRmGYRjpp18/\nF3CwUycXqTZUcaRSrFl4Xk8poao6OyiK0oHVLAzDyAmouuCDy5a5OFL58p1ffgEdlCcilVR18/lJ\nCi5mLAzDyCkkJMANN8Dp0/DppxAZmfG8Aj0o70ufjD/PsCrDMAzjvImIcAP2Dh6Ee+5xtY1MLd/P\ndFWCqsIwDMNIk7x5YdIkmDcPnn46c8v2Z1CeYRiGESYULgzTp0PLllCunOsAzwxS67M4AxzzVvMD\nx312q6oWDrK2NLE+C8Mwcirr1kGbNs61tmvX9B0b1Kiz4YgZC8MwcjLz58OVV7rwIE2b+n9csCY/\nyjAi0llE1orIehF5OJn9JUVkhogsE5GVItLHZ19REZkoImtEZLWINA+mVsMwjKxG8+Z/j/LesCG4\nZQWtZiEikcA6oAOwDVgE3KCqa3zS/H975x5tVXHf8c8XkIiID4SgMRhNtL5WIoohRGK9KZbaRqDW\ntNZEg7RBV5eoa9kYH63N1SRaNTEPH41SFdSoGCwujSmChBuNgBTkoUAwUXT5QMDHYiG2KvDrH/Pb\n3s3xnLvvJffcfS78PmvddefMnj3z3b8zZ//2zOyZaQY+ZmaXShrg6QeZ2WZJU4DfmNntknoBfc1s\nQ0UZ0bIIgmCn59Zb4brrYO5cGDiwOH2jtSyGAX8wsxfN7APgPmBsRZo1QDb2sQfwpjuKPYHjzex2\nADPbXOkogiAIgsTZZ6flzE8+GTZtqk8Z9XQW+wMv5z6/4nF5JgFHSnoNWApc4PEHAesl3SHpaUmT\nJO1WR61BEATdmiuvhMMOS05j8+bOz7+ezqI9/UOXAUvM7BPAEOAm3761F3AMcLOZHQNsAi6pm9Ig\nCIJujgSTJsF778HEiZ0/aa+e8yxeBQbnPg8mtS7yHAd8H8DMnpe0GjjU071iZtlK7tOo4Syam5s/\nDDc1NdHU1NQJ0oMgCLofvXvDtGlp0cHnnoNDD03xLS0ttLS0/FF513OAuxdpwHok8BqwgI8OcF8P\nbDCzKyQNAhYBnzOztyQ9DnzTzJ7zgfA+ZnZxRRkxwB0EQVDB1q1peZBadOoS5X8sPlA9EXgU6Anc\nZmYrJZ3jx28BrgLukLSU1CX2bTN7y7M4D/i5pN7A88D4emkNgiDYkWjLUWwvMSkvCIJgJ6PRXp0N\ngiAIdhDCWQRBEASFhLMIgiAICglnEQRBEBQSziIIgiAoJJxFEARBUEg4iyAIgqCQcBZBEARBIeEs\ngiAIgkLCWQRBEASFhLMIgiAICglnEQRBEBQSziIIgiAoJJxFEARBUEg4iyAIgqCQcBZBEARBIeEs\ngiAIgkLCWQRBEASFhLMIgiAICqmrs5B0kqTfSfq9pIurHB8gaYakJZKelXRWxfGekhZLerieOoMg\nCIK2qZuzkNQTuBE4CTgCOF3S4RXJJgKLzWwI0AT8UFKv3PELgBWA1UtnPWhpaSlbwkcITe0jNLWf\nRtQVmupHPVsWw4A/mNmLZvYBcB8wtiLNGmAPD+8BvGlmmwEkfRL4K+A/AdVRZ6fTiJUjNLWP0NR+\nGlFXaKof9XQW+wMv5z6/4nF5JgFHSnoNWEpqSWT8CLgI2FpHjUEQBEE7qKezaE/X0WXAEjP7BDAE\nuElSP0knA+vMbDHdrFURBEGwIyKz+gwHSBoONJvZSf75UmCrmV2TS/Mr4Ptm9qR/ng1cApwCnAls\nBnYldVE9YGbfqCijW41lBEEQNApm1qEH8Xo6i17AKmAk8BqwADjdzFbm0lwPbDCzKyQNAhYBnzOz\nt3JpTgC+ZWaj6yI0CIIgKKRXcZLtw8w2S5oIPAr0BG4zs5WSzvHjtwBXAXdIWkrqEvt23lHks6uX\nziAIgqCYurUsgiAIgh2HbjuDu2jCXxlIelHSMp9IuKAkDbdLWivpmVxcf0mzJD0naaakvRpEV7Ok\nV9xeiyWd1IV6BkuaI2m5Twg93+NLtVUbusq01a6SnvLJsyskXe3xpdmqDU2l2SmnbZvJxGXXqRqa\nOmynbtmy8Al/q4ATgVeB/6FiPKQkXauBoTW60rpKw/HAO8CdZvZZj7sWeMPMrnXHureZXdIAur4D\nbDSz67tSi5e9L7CvmS2RtDtpvOyvgfGUaKs2dP0dJdnKde1mZu/6WORvgW8BYyjXVtU0jaREO7mu\nC4GhQD8zG9Mgv79KTR3+7XXXlkV7JvyVRamv+prZE8DbFdFjgCkenkK6+XQpNXRBSfYys9fNbImH\n3wFWkuYBlWqrNnRBiXXLzN71YG/SGOTblG+rapqgRDvVmExcqp1qaBIdtFN3dRbtmfBXBgY8Jmmh\npAlli8kxyMzWengtMKhMMRWcJ2mppNvKaJ4DSDoQOBp4igayVU7XfI8qzVaSekhaQrLJHDNbTsm2\nqqEJyq1T1SYTl12nqmkyOmin7uosGrXvbISZHQ38JXCud700FJb6HRvFfv8BHESakLkG+GFXC/Cu\nngeAC8xsY/5YmbZyXdNc1zuUbCsz2+pruH0S+FNJX6443uW2qqKpiRLtpHZMJu5qO7WhqcN26q7O\n4lVgcO7zYFLrolTMbI3/Xw9MJ3WXNQJrvS8cSfsB60rWA4CZrTOH1ETuUntJ2oXkKO4yswc9unRb\n5XTdnekq21YZZrYBeITU/126rSo0HVuynY4DxvjY5b3An0m6i3LtVE3Tndtjp+7qLBYCh0g6UFJv\n4DTgoTIFSdpNUj8P9wVGAc+0fVaX8RAwzsPjgAfbSNtl+A8n4xS60F6SBNwGrDCzH+cOlWqrWrpK\nttWArJtCUh/gz4HFlGirWpqym7LTpXYys8vMbLCZHQT8PfBrMzuTEu1UQ9M3tqc+1W1SXj2pNeGv\nZFmDgOnpt04v4OdmNrOrRUi6FzgBGCDpZeDfgH8H7pf0j8CLpDdrytb1HaBJ0hBSs3w1cE4XShoB\nnAEsk7TY4y6lfFtV03UZaYn/smy1HzBFUg/SA+ZdZjbb9ZVlq1qa7izRTpVk3U1l16kM5TRdK+ko\nOmCnbvnqbBAEQdC1dNduqCAIgqALCWcRBEEQFBLOIgiCICgknEUQBEFQSDiLIAiCoJBwFkEQBEEh\n4SwaBElbfKngZ5WWXb7QJ2ghaaiknzSAxrGSDq9xbKDSktGLJH1J0mpJ/btaY1tImizp1C4oZ5ik\nx5WW0H9a0iSfOFav8l7siK0lNal1qeqPSXrM697f1lFji6Sh7Ug3VdJnqsSfJemG+qgrRtLsbNLt\nzkq3nJS3g/KuryuFpIHAPaS9x5vNbBFpqeqyOQV4mLQSaiUjgWVmNgHA/Vyj0enr8kjqaWZbcp8H\nAfcDp5nZUx53KtAP+N/OLDuHsf0rrR5NWrLo6E7UU41C20s6GOhrZs/XS0T2AGYdn2B2HzABKG3p\n87KJlkUD4mtLnQ1MhNYnQSVWS9ozS6u0+dNA/5smaYH/HefHByptvPKsP+F++BQq6QxvDSyW9DOf\nDYukdyR9z1s48yR93PMbDVzn6T+d0zAEuAYY60/Su+avR9J0pZV4n1VuNV4v53qPf0zSgEpbSBot\nab7nO0vSxz2+WWlDpTmSnpd0Xu6cy/2p/glJ90j653yWnmaoP+0ulDRD2y4TkeVzoKRfK63M+Zik\nwR4/2e013687z7nA5MxR+Pf5gJmtU9oE50HPb56kbF+Ptq6l6ndUhfO8VbdM0qF+7jBJc912T0r6\nk4rrGwjcDXy+8jv14xO8Li3xutUnd/0/8Tyfd2eYrQJ7s6SVSpv8PKIqLTlJo1zXIkn3Ky2PA2k5\niody6cZLWiXpKdIaRx/q7khd9+9xlaQppGUtBku6yM9dKqm5HfZ+yPXtvJhZ/DXAH2kjksq4t4GB\nQBPwsMf9GDjLw18AZnr4HtKqtwAHkNYWArgRuNjDf0Faprg/cDjpB9DTj90MnOnhrcBXPHwN8C8e\nvgP4mxr6xwE/zX1eDfT38N7+vw/px7p3rpzTPXw5cEOVfPfKhb8J/MDDzaQNb3YB9gHeIC398nnS\nukW9gd2B54AL8/r9nLnAPh5/GmnJmMqyH87ZZDww3cOT3Xaqcs4DwOgaNroBuNzDXwYWF1xLze+o\nIt/VwLke/idgkof75c49EZjm4SZa69MJWbhKvv1z4e8CE3PXP9XDhwO/9/BXgUc8PAh4K6svwBzg\nGGAA8Bugj8dfnLPJfwPHeHg/4CW3xy5un59uZ10/ENgCDPNjo4BbPNzDv+fji+wNvEBq+ZR+vyjj\nL7qhuh9TSes9TSY96Uz1+BOBw9Xa/dPPn9hG4JutmNmjkrINYkaSVg5d6Of0AV73Y++b2SMeXkRa\npC2jVndHW5upXCAp2/BlMHAIsID0Y8703w38V5VzB0u6H9iX5ABe8Hgj3Zg+AN6UtM7TjAAeNLP3\ngfflffMVOg8FjiTtPQLpxvxalbKH07pRzd3Atbmyf2F+B6lCLTuMIDkrzGyOpH2U+sFrXUtb31El\nme2ezsoA9gLuVOreMdJNt71aAT4r6XvAniTHO8PjDV8Mz8xWKnW9AXyJ1AWHma2VNKdKWcOBI4C5\nfk29SY4b4FOk5bIhPQjNMbM3IY1lAFnLqKN1HeAlM8u2Oh4FjFLr2lt9gYOBo2jb3mtJ9fd3Ney1\nQxPOokHxLoEtZrZe2/b/zwcOVuqyGQtcmZ0CfMFvkvl8smPbRPv/KWZ2WZXiP8iFt7JtPal1g6wa\nr7THwEhguJn9n99Adq2WtEYeN5BaE7+UdALpKTwjf61bXGdl/32tm+FyMzuuxrFKXdV4t0b8ctIN\np9YqyLXyq3YtUPs7quS9Kud+F5htZqdI+hTQ0lYGku4g7W/wqpmdTHogGWNmz0gaR2qRVNObXVN7\nx05mmdnXasmokVe+fnSkrmdsqvh8tZndWnH+RNq2d606ulMQYxYNiPcl/4x0o9wGf5qdTtr9aoWZ\nZU9PM4Hzc3kc5cEn8VUuJY0C9iZV+NnAV72sbFP5AwqkbSQNuleVXSN+D+BtdxSHkZ4sM3oA2Rs4\nXwOeqHF+9tR/VkF5Rrre0Upv+ewOfKVKmlXAQEnDIe0fIemIKvnNpbWf+uvA41XSVHIjME7Sh/sD\nSDpFaazlCc8nc6LrLW24VOtatuc7ypO33fiixGY23syOdkcBqTXxutL+GmdQfKN8EjhViUFs61zw\n8+cDI+RvPEnqK+kQP/4SqfsJUsvzBL/mXWitJ9Cxul6NR4F/yMZKJO3vNi6y9yAaYN+csghn0Tj0\n8UG1Z4FZwAwzu8KPVb5JMpV005maizsfONYH7JbTuuTwFaQm9zOkPuXXSeMjK4F/BWZKWkr6AWaD\nvPmy8mXfB1zkA5PbDIZW0ZiFZwC9JK0Argbm5dJsAoa5tiZaW0l5moFfSFoIrM/lW/XtGjNbSHqq\nXwb8ijRGsqEizQdui2uUtuVcDHyxStnnAePdPl8HLqhyfZXlryM5mB8oDbKvIHV7bPRrGer5XUXr\nHge1rqWt72ibpBXhD5ehBq6W9DSpq63a99PWW0qXk7aa/S0ffQOuWl4PkG6mK4C7SF1ilbZ/g+T0\n7/VrmkvqFsTLOdbTrSHZa57HL89l06G6XqnXzGaRxj3mSVpG6jrbvS17K70A8aaZVbZQdhpiifId\nHKXNobaY2RZJXwRuMrNjytYFIGmjmXX6u+uS+prZJkm7kQZTJ5jZks4uJ/goOdvvQ3I0x7kDbc+5\nnya95FDZGmxv2XWr65LOJg1u/6gz8uuOxJjFjs8BpI1XepD6mScUpO9K6vWkcqt3K+1Keo01HEXX\n8UulHex6A1e211EAmNkLkjZK+oxt31yLetb100hjhDst0bIIgiAICokxiyAIgqCQcBZBEARBIeEs\ngiAIgkLCWQRBEASFhLMIgiAICglnEQRBEBTy/5sFNlGCF/qjAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x581c650>"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex10-pg282"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "print (\"Example 5.10\")\n",
      "%matplotlib inline\n",
      "#plot the graphs\n",
      "import numpy\n",
      "import matplotlib\n",
      "from matplotlib import pyplot\n",
      "p=0.96 #p=p't8/pt8\n",
      "f=0.02\n",
      "fAB=0.04\n",
      "\n",
      "z0=numpy.linspace(0.45,0.63,7)\n",
      "gmr=1.3/1.33 #gm=gm/gm' gm=gamma\n",
      "gm=1.33\n",
      "gm1=1.3\n",
      "tlAB=7.\n",
      "tl=6.\n",
      "i=0;\n",
      "z1=numpy.linspace(7,9,3)\n",
      "for tlAB in z1:\n",
      "    tt=6.5\n",
      "    g1=numpy.zeros(7)\n",
      "    gc1=0;\n",
      "    for tt in z0:\n",
      "        A=(1+f+fAB)/(1+f)*((gmr)**(1./2))*1/p*((tlAB/(tl*tt))**(1./2))*((((gm1+1)/2.)**((gm1+1)/(2*(gm1-1))))/(((gm+1)/2.)**((gm+1)/(2.*(gm-1)))))\n",
      "        g1[gc1]=A\n",
      "        gc1=gc1+1;\n",
      "    number=0;\n",
      "    pyplot.plot(z0,g1)\n",
      "    i=i+1;\n",
      "    pyplot.xlabel(\"Turbine expansion parameter\")\n",
      "    pyplot.ylabel(\"A8-AB-ON/A8-AB-OFF\")\n",
      "    pyplot.title(\"Nozzle throat area variation with \")\n",
      "    pyplot.legend([\"tau(AB)=7\",\"tau(AB)=8\",\"tau(AB)=9\"])\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 5.10\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXl4VFW2v/8uZgyRURlECLOMIiCTKHFABgWUQUEQUUG7\n29v0ZN/brd2Cfbv7/r5tX2+jbbcIIgQFZBICMghKcGJQZmQyDAKCzEMChCFZvz/2qaSIKZJQqVRV\nst7nOU/OsM/Z65w6qU/tvfZeS1QVwzAMw8iJEuE2wDAMw4hcTCQMwzCMgJhIGIZhGAExkTAMwzAC\nYiJhGIZhBMREwjAMwwiIiYSRZ0QkXkT2F+D19orIvQV1PcMhIr8XkfFBnL9FRO4qSJsKsn4RSRKR\npwvTpuKMiUQU433JHhaR6/z2jRCR5eG0KydEZJKI/He23eothVF/sfliUdX/UdWReSmb0+eiqi1U\n9dPQWJc7/vWLyBgRmZK9CIX03hgmEkWBEsAvwm1EqBGRUkFeokC/VEQkIv93RKRkuG0wihYR+aIb\neUaBvwPPi0jFnAqISGcR+UpETonIGhHp5O3vJCIpfkuaiOzxjp3y258qIhkiUieHa9cSkdkickRE\ndovIzwPY8AzwGPCf3jXn+R2+TUQ2enVOF5Gy3jnxInJARP5TRA4Bb4tIGRH5h4h87y3/JyJlvPKV\nRGSBZ8sJEZkvIjd5x/4C3An806v/tQB2zhSRQ54tK0Skmd+xSSLybxFZKCKpQPzV7l9E2ovIShE5\nKSIHReR1ESkdoN5FIvJctn0bReQhb32siOwTkdMi8rWIdPErN0ZEZonIFBE5DQzP/us70H0F+lz8\nuwFFpOxVnrnvM/q116I9KCLDA9zj3SKyyW97qYis8dv+TET6+NcvIj2A3wOPevat97tknIh8LiJn\nRGSJiFTNqV6jAFBVW6J0AfYA9wKzgf/29o0AlnvrVYCTwBDcD4JBwAmgSrbrlAKSgL/kUMdfvWMl\ngXhgv7e/BLAW+IN3fj1gF3B/AFvfAf6Ubd9eYBVQA6gMbAWe9Y7FA5eA/wFKA+WAPwFfAtW85Qvf\nNb17fdgrVwGYAXzgV9dy4KlcnudwIMar7/+A9X7HJgGngE7edvmr3T/QBmjvPae63r39IkC9jwOf\n+2038z630t72EO/5lAB+DRwCynjHxgAXgT7edjlgNDAlj/eV0+eyB7jHW7/aM/d9RmO896MncBao\nmMM9lgfOe59TaeAwsN+zqzxwDqicQ/2jgYRs10oCkoGG3v0uB/4n3P+PRXWxlkT0o8BLwM9FpFq2\nYw8AO1T1PVXNUNXpwHagd7ZyrwNnVPVF/50i8igwGOivqunZzrkdqKaqf1bVy6q6B5iAE6JASA62\nv6aqP6jqSWA+0NrveAYwWlUvqWoa7lfvn1T1mKoeA17GfcGiqidU9QNVTVPVVJy4dc2l/iuNUZ2k\nqmdV9ZJ37VtFJNavyFxVXemtt7ra/avqOlVd4z3374C3crAn87pAaxG52dseAsz27MD7/E5613oV\nKAs08Tv/S1VN9MqmZb/PPNzX1Z5LwGfucck7nq6qi4DUbLb5bDgPfOU9g7bABpzgdAE6At9670B2\nJAf7FJioqsne/c7gyvfGKECC7ec1IgBV/UZEFgC/A7b5HaoF7MtW/DvgJt+GiDwL3AV08C8kIrfh\nxKObqh7Podq6QC0R8f/HLgnk1+H5g9/6ec9mH0dV9aLfdi3Pfh/7fOXFOe//D+iO+9UNUEFERFV9\n/oiAfglxPoa/AgOAG3ACBe7Xc4p37vd+p1z1/kWkMfAq7gvxOtz/2tc51a2qKSLyIU6Q/4YTmhF+\ntj0PPOXdqwLXe3b5OHCV+yoJ/OUq95UbAZ+5x3FVzfDbPodryeXEClzr44C3fhInGhdwrYP8kP29\nCVSnESTWkig6jAZG4icAuC+1utnK1cX7UhGRO3HdCX29X994+28EPgB+pqobA9S3H9ijqpX9lutV\n9cEA5a/FcZz9nINAnN92HbK+uH8DNAbaq2pF3JeP/6/Q3OofAvQB7vXOr+ft9/8V63+NfVz9/v+N\n62Jq6F3vRa7+/zYNGCzOZ1ROVZdD5mf0W2CgqlZS1crA6avYlZ3Hcrmv3J5LTs/8YC7nBGIFcDfu\nR0kSWaLR1VvPCRvFFGZMJIoIqroLeJ8rRzotAhqLyGARKeV1H90CLPC6NmYAj6tqsu8EcaOIZgHv\nquqsq1S5BkjxHMvlRaSkiLQQkXYByh8G6l/7HQLui/QPIlLN61p7CXjXO1YB94vytIhUwYlm9vob\nXOXaFXC/aE+ISAyuVeFP9i6P3O6/Au6X+jkRuQX4aS73thAn4C8D0/32xwKXgWPiHPcv4VoSeSW3\n+8rtc8npmWcfkppXvsR1Rd0OrFHVrbh77kDgFugPOCd19ud/1a5Do+AwkSha/AnXtaEAXjfRg7hf\n2ceA54EHVfUEzuF9IzBbskYybca1RLoAv/Tbf0ZEant1+K6d7l27NbAbOIrrdw/0BfY20Mwb7TMn\nQJns49+z/4r8M67LZpO3fO3tA/gHzgF6DPdltCjb+WOBAeJGPv0jh7oTcN0q3wNbgJU52JK57XWx\nXO3+n8f9ij/j7Z+ew/1kXdx1q83BfS5T/Q4t9padOEf/ea7sQsxpzoD/vtzuK7fP5WrP3FdXnlDV\nczhn/zeqetnb/SWw1/N35MRM7+9xEfHvrgv42RgFi2R11xbwhd0v1QTcF5ECb6nqj4YeihuO2BPX\nlzlcVddnL2MYhmGEh1A6ri8Bv1LVDSJSAVgrIktVNdOxKiK9cH22jUSkA64ft2MIbTIMwzDyQci6\nm7xhjRu89VTcqJta2Yr1ASZ7ZVYDlUSkeqhsMgzDMPJHofgkRCQOuA1Yne3QTbhRMj4OALUxDMMw\nIoKQi4TX1TQLN9s0Naci2bbNAWUYhhEhhHQynRerZjZuOOXcHIp8D9zst12bKycs+a5jwmEYhnEN\nqGpQw4VD1pLwxjW/DWxV1ZyGHAIkAsO88h2BU6p6OKeChRGjpDgso0ePDrsNRWmx52nPM5KXgiCU\nLYk7gKHAJr/ojS/gZmyiquNUdaGI9BKRZFxgsCdDaI9hGIaRT0ImEqr6OXloqajqf4TKBsMwDCM4\nbMZ1MSM+Pj7cJhQp7HkWLPY8I4+QzbguSK4M5GkYhmHkBRFBg3RcW6hwwzAC8uO4ekakEqof0iYS\nhmFcFWvFRz6hFHPzSRiGYRgBMZEwDMMwAmIiYRiGYQTERMIwDMNj8ODBzJs3r8Cu16FDB7Zu3Vpg\n1wsHJhKGYUQtcXFxfPLJJwVyrU2bNrFp0yb69u17xf6kpCRKlCjB3/72tyv27927lxIlShAbG0ts\nbCw1atTgueee4/Lly5llnn/+eV566aV82/Lee+9lXjc2NpaYmBhKlCjB+vWFn5PNRMIwjKjFmwdQ\nINcaN24cQ4cO/dH+yZMn06JFCxISEnI87/Tp06SkpLB582ZWrlzJG2+8kXmsd+/eLF++nMOHcwxJ\nF5AhQ4aQkpKSufzrX/+iQYMG3Hbbbfm7qQLARMIwjKjk8ccfZ9++ffTu3ZvY2FheeeUVBg4cSM2a\nNalUqRJdu3a9oqsnPj6et99+O3N70qRJ3HnnnZnbixcvpmvXrlfUcfbsWWbPns2bb77Jvn37WLt2\nbUB7brjhBrp163ZFneXKlaNt27YsWbIkqHudNGkSw4YNC+oa14qJhGEYUcmUKVOoU6cOCxYsICUl\nhd/+9rc88MADJCcnc/ToUdq0acOQIUMyy4tIwPkEZ8+eZc+ePTRp0uSK/XPmzKF69ep07tyZ3r17\nM3ny5B+d62vJHDx4kCVLltCpU6crjjdt2pSNGzcCsG/fPipXrhxwmT59+o+u/9133/HZZ5+ZSBiG\nEZ2IBL8UFMOHDycmJobSpUszevRoNm7cSEpKSq7nnTp1CoDY2Ngr9k+ePJmBAwcCMHDgQKZPn36F\nzwGgWrVqVK5cmdq1a1OhQgX69+9/xfHY2NjM69epU4eTJ08GXAYNGvQj2xISErjrrruoW7du3h9E\nAWIiYRhGUKgGvxQE6enp/O53v6Nhw4ZUrFiRevXqAXDs2LFcz61UqRLAFYKyf/9+kpKSMkWiR48e\npKWl8eGHH15x7vHjxzl58iTnzp2jc+fOdO/e/YrjZ86coXLlytd8XwkJCTzxxBPXfH6wmEgYhhG1\n+HcfTZ06lcTERD7++GNOnz7Nnj17gKzuoJiYGM6ePZtZ/ocffshcj4mJoUGDBuzYsSNz35QpU8jI\nyKBXr17UrFmTevXqkZaWlmOXEzj/wxNPPMGqVas4ceJE5v5t27Zx6623Aq67yX/UUvZl2rRpV1zz\niy++4NChQwwYMOBaH1HQRI9I/Pa3cOBAuK0wDCOCqF69Ort27QJcK6Bs2bJUqVKFs2fP8sILL1xR\ntnXr1syZM4fz58+TnJx8hRMboFevXqxYsSJze/LkyYwZM4aNGzdmLrNnz2bhwoVXiIBPhC5cuMCU\nKVOoWbMmVapUASAtLY1169bRrVs3wHU3+Y9ayr4MHjz4CpsmT57MgAEDiImJKaAnln+iRyQuX4ZW\nrWD4cNiyJdzWGIYRAfz+97/nz3/+M5UrV+bkyZPUrVuXm266iRYtWtCpU6crWhq/+tWvKFOmDNWr\nV+fJJ59k6NChVxx/5plneO+99wBYtWoV+/fv57nnnuPGG2/MXHr37k3Dhg2ZPn165rmVKlXKnCex\nevVqEhMTM685f/587r77bmrUqJHve0tLS2PmzJlh7WqCaMsncfIk/Pvf8PrrcNttrnURH1+wni/D\nMDIpyHkI0cCQIUN45JFHfjSh7lrp2LEjEydOpFmzZgVyvUAE+pwKIp9EdImEj7Q0ePdd+PvfITbW\niUW/flDKIp8bRkFS3EQiWjGRCJSZLiMD5s+HV16Bgwfh17+GJ5+EMPbfGUZRwkQiOgilSESPTyIn\nSpSAvn3h88/hvffgk0+gXj0YPRqOHg23dYZhGFFPdIuEP506wZw5TjB++AEaN4af/hSSk8NtmWEY\nRtRSdETCR+PGMG4cbN8OVas68RgwAFavDrdlhmEYUUd0+yTyQmoqTJwIr74Kdes6J3evXq6ryjCM\nq2I+iejAHNfBiISPy5dh5kzn5E5Lg+efhyFDoGzZgjHSMIogJhLRgYlEQYiED1Xn4H7lFdi8GUaN\ngmefBS92i2EYWZhIRAc2uqkgEYF774XFi2HhQjd7u359+M1vYP/+cFtnGEYYsfSlP6b4iYQ/t94K\nU6bAhg2uhXHrrTBsGGzaFG7LDMPIA0U1fSnA3Llzad68Oddffz3NmzcvUPHKDyEVCRGZKCKHRWRz\ngOOVReQDEdkoIqtFpHko7QlInTrOsb1rFzRrBj16uOWTTwoujrFhGAVOUU1feuTIEYYMGcKrr77K\nmTNneOWVV3jsscfyFPa8oAl1S+IdoMdVjr8ArFPVW4FhwNgQ23N1KleG3/0O9uyBgQPhueegXTuY\nPt05vg3DiBiKcvrS5ORkKlSokJmbolevXsTExGRGvC1MQioSqvoZcPIqRZoCy72yO4A4EbkhlDbl\nibJl4emn4ZtvYMwYeOMNaNTIBRb0i0dvGEb4KMrpS1u1akWpUqVYsGAB6enpzJ07l3LlytGqVatr\nf2DXSLgj4m0E+gGfi0h7oC5QG4iMmBolSkDv3m5ZtcqNiPrTn+AnP4Gf/xxuvDHcFhpG2JGXg4/C\nrKMLpsto+PDhmeujR49m7NixpKSk/CgtaXbymr70mWee4dVXX6WUXzDRatWqAa7bqXPnzjmmLz10\n6BCQlb40NypUqMC4ceN49NFHuXjxImXKlGHWrFmUL18+13MLmnCLxP8HjBWR9cBmYD2QHl6TAtCx\nI8yeDTt3Ov9Fkybw6KNuVFSjRuG2zjDCRkF9wQdLeno6L774IrNmzeLo0aOU8CbMHjt2LFeR8E9f\nWrVqVSArfekrr7wCXJm+1N+5ffz4cUqUKEFaWhovvfQS3bt358svv8w8fi3pS9etW8czzzzDZ599\nRps2bfj666/p06cPixYtysxyV1iEVSRUNQV4yrctInuA3TmVHTNmTOZ6fHw88fHxIbYuAI0bw5tv\nuhbFP/8JnTvDnXfCf/6nExLDMAqNQOlL69aty6lTp6hSpUq+05d27twZuDJ9qQ9f+tKc8k340pf+\n/e9/58SJE5nZ6bZt28awYcMA193UvHng8TlvvfUWgwcP5uOPP6Zjx460adMGgHbt2tGhQweWLVt2\nVZFISkoiKSkp4PFrQlVDugBxwOYAxyoCZbz1kcCkAOU0YklNVX3tNdW4ONUuXVTnzVNNTw+3VYZR\nIET0/56qduzYUd966y1VVX3jjTe0devWeubMGU1NTdWf/vSnKiK6a9cuVVV98cUXNT4+Xs+dO6ff\nfvutNmzYULt06ZJ5rVGjRulf//rXzO3GjRvryy+/rIcPH85cEhMTtWzZsnr8+HHds2ePiohevnxZ\nVVXT0tL0v/7rv7RWrVqZ1zh//rxWqVJFDx06lK/7WrJkiVarVk03bNigqqrr1q3TqlWr6tKlS3Ms\nH+hz8vYH9x0e7AWuenGYBhwELgL7ca2GZ4FnveOdgB3AdmAWUDHAdfLxeMPEpUuq06ertmmjesst\nqhMmqKalhdsqwwiKSP/fmzdvntapU0crVaqkf/7zn7Vv374aGxurcXFxmpCQoCVKlMgUiWPHjun9\n99+vsbGx2qVLFx0zZozeeeedmdfasmWLNm/eXFVVV65cqeXLl9djx479qM7mzZvrG2+8oXv37lUR\n0QoVKmiFChW0UqVKGh8fr19//XVm2RkzZmj//v2v6d7+9re/af369bVChQpav359ffXVVwOWDaVI\nFL+wHKFGFZYvd07ujRudg/snP3HDaw0jyihuYTksfWkO146GFyCqRMKfTZtcitUFC+CJJ+AXv4C4\nuHBbZRh5priJRLRisZuilVatICHBtShKloS2baFPHxc3KiMj3NYZhmHkirUkCpOzZ2HaNDc5LzXV\nZc4bPhy8URCGEWlYSyI6sJZEUSEmBkaMgHXrYPJkWLvWRaB9+mm3zzAMI8IwkQgHIm5+xXvvucl5\nDRrAQw+5VKvvvgsXLoTbQsMwDMC6myKHy5edg/tf/3I+jKeecqOi6tYNt2VGMca6m6ID624qDpQq\n5VoTH30En34K589DmzbQt6/bZ45uwzDCgLUkIpmzZ2HqVOfoPncuy9Ftcy6MQsJaEtGBtSSKKzEx\nMHIkrF8P77wDX3/tHN0jRrh9hmEUKJa+9MeYSEQDInDHHc7RvX071Kvn5lv4nN/m6DaKKUU5femE\nCRNo1KgRsbGx9OzZMzPceGFjIhFtVK8OL77osuf953/CpEnOuf3ii7BvX7itM4xCpaimL01KSuLF\nF18kMTGREydOUK9ePQYPHpy/GyogTCSiFZ+je+lSWLHCTc677basfeboNoo4RTl96YIFCxg4cCBN\nmzaldOnS/PGPf+TTTz9lz549+bpOQWAiURRo0gTGjnUtiV694PnnoWlT+Mc/wMu4ZRhFjaKcvjR7\nCynD+9G3ZcuW/D6moDGRKErExMAzz8CGDTBxIqxZ4/wXvn2GEQpEgl8KiOHDhxMTE0Pp0qUZPXo0\nGzduJCUlJdfz8pq+dPr06Vf4HMClL61cuTK1a9emQoUKOaYv9V3fl7400DJo0CDAZcGbOXMmmzdv\n5vz58/zpT39CRDh37ty1PZggMJEoivgc3VOnwrZtUKeOy9Pt22eObqMgcYlpglsKgPT0dH73u9/R\nsGFDKlasSL169QCXvjQ3/NOX+vClL/WJhH/6Un+OHz/OyZMnOXfuHJ07d6Z79+5XHL+W9KX33nsv\nY8aMoX///tSrV4969eoRGxtL7dq183WdgsBEoqhTowb84Q/O0f38866F4XN0798fbusMIygCpS89\nffp0Zv+9r9smr+lLffinL61Zsyb16tXLTF+aE770patWreLEiROZ+7dt25aZcnTfvn2Zo6FyWqZN\nm5Z53s9+9jN27tzJDz/8QL9+/bh8+TItWrQI5nFdEyYSxYVSpeDhh2HZMkhKco7u1q2z9tmEKSMK\nqV69Ort27QJcK6Bs2bJUqVKFs2fP8sILL1xRtnXr1syZM4fz58+TnJx8hRMboFevXqxYsSJze/Lk\nyYwZM4aNGzdmLrNnz2bhwoVXiIBPhC5cuMCUKVOoWbNmZn7rtLQ01q1bR7du3QDX3ZSSkhJw8Y1g\nunDhAlu2bEFV2bdvH8888wy//OUvqVixYgE/wTwQbGq7wliI8BSKUUtKiuqbb6q2bKnapInqP/6h\nevJkuK0yIohI/98rqulLT506pa1atdKYmBitUaOGvvDCC5qRkRGwfKDPCUtfahQIqvDFFy78x+LF\n8Mgj8NxzLmmSUawpbmE5LH1pDteOhhdARHTrka00vaFpuE0p+vzwA4wfD+PGuVSrzz0H/ftDmTLh\ntswIA8VNJKKVsMRuEpFJfutPBFNJQXD35Lvp/m53Ptz5IRlqE8VCRo0a8Mc/wt698Otfw4QJztH9\nxz/CgQPhts4wjELmao7rW/3WfxlqQ3Lju19+x5CWQ3gp6SWa/LMJr61+jTMXzoTbrKJLqVLQrx98\n/DF88gmcPg233ur22Yxuwyg2BOxuEpH1qnpb9vVw4O+TUFW+3P8lY1ePZdnuZTze6nF+3uHnNKzS\nMFzmFR9SU13mvPHj4dgxF7Z8+HA3Yc8oklh3U3QQFp+EiBwFpgECPApM99bBecxHBVNxfgjkuN5/\nej//+upfTFg/gY61OzKq/Sjuq39fwKn3RgGyYYMLXz51KrRs6TLp9esH110XbsuMAsREIjoIl0gM\nB3wHJfu6quY8oyQE5Da66dylc0zdPJWxq8eSoRn8vP3PebzV48SUiSksE4svFy7A/Plukt6qVW5k\n1FNPwe23F2i4BSM8mEhEB+ESidKqeimYixcUeR0Cq6ok7U1i7OqxfL7vc5667Smeu/056layPNGF\nwvffQ0KCE4wyZZxYDB3qwpsbUYm1yqOHcIjEOlVt462/rqo/D6aiYLiWeRK7T+7mjTVvMGnjJOLj\n4hnVfhR31b3LXvrCQBU+/9yJxdy50LWrE4yePaF06XBbZxjFhlCLREQ6rvNL6sVUEjYm8Nrq1yhX\nqhyjOozisZaPUa5UuQK20siRlBSYOdMJRnIyPP64E4ymNufFMEKNiUQ+yNAMlu5aytjVY1l7aC0j\n24zkp+1+yk3X31RAVhq5smOHy6Q3ebKbe/HUU/Doo3D99eG2zDCKJKEWifNAsrfZANjld1hVNdeY\nDSIyEXgAOKKqLXM4Xg14F6gBlAL+rqqTcihXoGE5dh7fyeurX+e9ze/RvWF3RrUfRcfaHa0rqrC4\nfBmWLHGti48/dvm6n3oK7roLSljMScMoKEItEnFXO1FV9+Z6cZE7gVQgIYBIjAHKqurvPcHYAVRX\n1cvZyoUkdtPptNO8s+EdXl/zOlXLV2VUh1E80vwRypS0EBSFxtGj8N57TjBSU+HJJ+GJJ1wODMMw\ngqJQYjeJSD2gBW4I7FZV3Z2vCpzYzA8gEs8CrVT1ORGpDyxW1cY5lAtpgL/0jHQWfruQsavH8s3R\nb/hJ25/wk3Y/oXoFG5VTaKjC2rVu7sX06dCunROMhx6CcuY/MoxrIdQtieuBCUA7wJf7sjWwFnha\nVfMUEyMXkSgBfAI0BmKBR1R1UQ7lCi0K7DdHvuG11a8xY+sM+jTpw6j2o2hbq22h1G14nD/vRkVN\nnAjr18OgQU4w2rSxuReGkQ9CLRKTgT3An1RdRD3vS/0PQENVHZZHI+MILBJ/AKqp6i9FpAGwFLhV\nVVOyldPRo0dnbsfHxxMfH5+X6q+ZE+dPMGHdBN746g1uvv5mRnUYxcO3PEzpkjaEs1D57jvn6H7n\nHefgfuopGDIEqlULt2WGEXEkJSWRlJSUuf3yyy+HVCSSVTXHgEhXO5ZD2TgCi8RC4C+q+oW3/THw\nX6r6dbZyYcsncTnjMvO2z2Ps6rHsObWHn7X7GSPbjqTadfYlVahkZLiMeu+842Z433efE4z773fB\nCA3D+BEhDRVOVhiOULIduA9ARKoDTYB8+TxCTakSpejfrD+fPvkpiYMS2XliJ41eb8SIxBFsOrwp\n3OYVH0qUgHvugSlTXOuiWzd4+WU3lPb3v4edO8NtoWEUSa7WkkjADYH9b9/PeHFjRP8ANFbVx3O9\nuMg0oCtQDTgMjAZKA6jqOG9E0ztAHZxg/Y+qTs3hOhGVme7I2SO8tfYt/v31v2lctTG/6PALejfu\nTckSJcNtWvHjm29c62LKFGjc2LUuBg6EChXCbZlhhJ1Q+yQqAm8DbbjScb0e57g+FUzF+SHSRMLH\nxfSLzN46m7Grx3L47GH+4/b/4Ok2T1OpXKVwm1b8uHQJFi50zu5PP4WHH3aCcccd5uw2ii2FNQS2\nIdCMrCGwu656QgiIVJHwZ/WB1by25jUWfruQwS0GM6rDKG6pdku4zSqe/PCDa1lMnAjp6W5k1LBh\ncJPNrjeKF4We41pEHlTVBcFUeC1Eg0j4OJhykDe/fpNxa8fRukZrftHhF/Ro2IMSYjOJCx1VWL3a\nicXMmdC5sxOM3r2hbNlwW2cYISccIhGWGE7RJBI+0i6n8f6W9xm7eiypF1P5efuf80TrJ7i+rMUp\nCgtnz8Ls2c5/sWWLG0b75JPQqpV1RxlFFhOJKEBV+WL/F4xdPZalu5bSr2k/RrYZabGiwsmuXS7Q\nYEICxMbCY4/B4MGWhtUocoRDJNqr6ppgKrwWolkk/DmcepjJGyczYd0EypQsw4g2I3i81eNUva5q\nuE0rnmRkwJdfwrRprjuqYUMnGAMHWqIko0gQcpEQkbrAWVU9JiKdgC5Asqp+EEyl+aWoiIQPVWXF\ndyuYsG4CC3YuoFejXoxoM4L4uHjzXYSLS5dg2TKXs3v+fOjQwQnGww9bKHMjagn1ENiXgCe8zWm4\nSW9JQAdgk6r+IpiK80NREwl/Tpw/wXub3mP8uvGcu3SOEW1G8MStT1Aztma4TSu+nDvnhGLqVDfL\n+/77nWBSy2X8AAAgAElEQVT07GnBBo2oItQisQ03L+I6YB9QQ1XPikgpYKOqNg+m4nwZWYRFwoeq\n8tXBrxi/djyzts0iPi6eEbeNoEfDHjZJL5ycOOEc3lOnwsaNrmXx2GMQHw8l7XMxIpuwZaYrbAd2\ncRAJf1IupDB9y3QmrJ/AwZSDPNX6KZ667SnqVqobbtOKN99/D++/7wTj4EGXVe+xx1xYcxuEYEQg\noRaJ3cDzgACveOv4tlW1fjAV54fiJhL+bDq8ifFrxzN1y1Rur3U7I9uMpHeT3pYYKdzs2OEc3lOn\nuvkYvhFSt9gESiNyCLVITCIryJ+QLeCfqj4ZTMX5oTiLhI/zl84ze9tsxq8bz/Zj23ni1icY0WYE\njav+KEeTUZj4kiVNneqSJdWo4QRj0CCoXTvc1hnFnEIfAutXcQ1V/SGYivNZX7EXCX92Ht/JhHUT\nmLxxMrdUu4WRbUbSv2l/ypcuH27Tijfp6bBihWthzJkDLVs6wRgwAKpUCbd1RjGkUEVCRCoBA4DB\nQFNVrRVMxfnBRCJnLqZfZP6O+YxfN56vDn7FYy0eY2TbkbSq3ircphkXLsDixa6FsXgxdO3qBKN3\nb4iJCbd1RjGhMOZJXAf0xQlDa+B64CHgM1VND6bi/GAikTvfnfqOiesnMnHDRGpWqMnINiMZ1GIQ\nsWVjw22akZLi0rFOnQorV8KDDzrB6NYNSlumQyN0hNonMQ03J+IjYAawAjeRrtBjF5hI5J30jHSW\n7FrC+HXjSdqbRP+m/RnZZiTtb2pvYUAigSNH3OzuqVNdoqSBA53D+447XGIlwyhAQi0SG4A03ES6\nGap6SET2mEhEDz+k/sCkDZOYsG4C15W+jhFtRjC01VCqlLf+8Yhg717n7J46FU6dcmLx2GMWdNAo\nMAqju6kprqvpEeAo0BRoUZhOa88OE4kgyNAMkvYmMWHdBBZ+u5AHGz/IiDYj6Fq3q7UuIoXNm7OG\n1MbEZA2prV9oI82NIkhhO67b4QRjIHBAVTsHU3F+MJEoOI6fO86UTVMYv248l9IvZYYBqV7BAtpF\nBKrObzF1KsyYAQ0aOMF45BELOmjkm3BEgW2LS196p6quCKbi/GAiUfCoKqsOrGL8uvHM2TaHe+vf\ny4jbRnB/g/stDEikcOkSfPyxa2EkJkL79hZ00MgX4RCJdaraJpgKrwUTidBy5sIZpm2exvh14zl6\n7ihPtX6KJ297kjoV64TbNMPHuXPw4YeuhbF8Odx3nxOMXr0s6KAREEs6ZBQ46w+tZ8K6CUzbMo2O\ntTsyss1IHmz8IKVL2lDNiOHkSTdZb+pUWL8eHnrITdi77z4oY+FajCzCIRIPqercYCq8FkwkCp9z\nl84xa+ssxq8bT/KJ5MwwIA2rNAy3aYY/Bw8638WsWbB1q2tZDBgA3btDeZuBX9wpjNFNdYAzqnpK\nROoB7YBtqrolmErzi4lEeNl+bDsT1k0gYWMCzW9sztO3Pc3DtzxMTBmbORxRHDoEH3zgQpuvXevy\nYPTv74Qj1iZVFkdCPU/id8CzwEWyosB+AXQEJqrq/wZTcb6MNJGICC6mX2Te9nlM2jiJL/Z9Qe8m\nvRnacij31r+XUiVKhds8w59jx2DePCcYX3zh8l/07+/CglSuHG7rjEIi1CKxFWgLxAB7gXqqelRE\nYoA1lnSoeHPk7BHe3/I+UzZNYd/pfQxuMZihrYbSpmYbm3sRaZw6BQsWuC6p5cuhUycnGA89BDfc\nEG7rjBASapHYpKqtRKQkcAio6YvXJCKbVbVlMBXny0gRPXBAuemmwqrRyA87ju3gvc3v8e6mdylX\nqhxDWw3lsZaPEVcpLtymGdlJTYWFC10LY8kSaNPGCcbDD0OtQovZaRQShRG7CVxL4gxQHvgAuAco\no6pDg6k4P4iIVq6sdO0Kzz7rulotzE3koaqsPLCSdze9y4xvZtDshmYMbTWUgc0GUrm8dXFEHOfP\nw0cfOcFYsACaNnWC0a8fxMWF2zqjAAi1SJQDBgGHVHWJiAwFOgPbgXGqeiGYivNlpIieOaNMmwbj\nxrkRgCNHwlNP2STUSOVi+kUWfbuIdze/y0e7PuK++vcxtOVQejXqRdlSZcNtnpGdixfhk0+cYMyb\nB3XqOMHo3x8aW2KraCUsSYe8EU+PquoreSg7EXgAOJJT95SIPA8M8TZL4WJDVVPVU9nKXeGT+Ppr\nePNN9z536+ZaF3ffba2LSOVU2ilmb53Nu5vfZdPhTQxoOoChrYZyR507KCH2oUUcly/DZ5+5f7A5\nc6Bq1SzBaNHCgg9GEYUmEiJyIy5m02CgFvCBqv4mD+fdCaQCCbn5METkQeCXqnpfDsdydFyfPg3v\nvutaF2lp8MwzMHw4VKuW6y0ZYWLf6X1M2zyNKZumcPbSWYa0HMLQVkO5pZrlho5IMjJg1SonGLNn\nu8l6PsFo29YEI8IJdXfT9UA/nDA0BOYCg1Q1X+5jEYkD5udBJKYCH6vq2zkcu+roJl9MtHHjXEv5\ngQfgJz+BLl3sHY5UVJWNhzfy7qZ3mbp5KrViazG01VAGtRhEjQo1wm2ekRO+fN4+wbh4MUswOna0\npnwEEmqROA8sBf6qqqu8ffnOJ5EXkfAy4O0HGmTvavKO53kI7IkTkJDgBEPEdUUNG2ZDwyOZ9Ix0\nlu9dzpRNU5i3fR4da3fk8VaP89AtD9mEvUhFFbZsyRKMEyfcCKn+/eHOO6GUzZuJBEItEr/EtSJK\n4zLTzQSWhUgkHgUeU9W+AY7r6NGjM7fj4+OJj4+/ar2qrlv1zTdh0SLo29cJRseO1rqIZM5ePEvi\njkTe3fyuTdiLJnbuzBKMffvcP1z//nDPPRZPqhBJSkoiKSkpc/vll18OvU9CRBrgRjkNAhoBo3E+\niZ15qiBvIvEB8L6qTg9wPKjJdEePwqRJ8NZbcN11TiyGDrVoy5GOTdiLUvbscQ7v2bNh+3aX07t/\nfzd23eJJFSrhCPDXEte6eFRVG+TxnDiuIhIiUhHYDdRW1fMByhTIjOuMDDfKb9w4WLbMxUH7yU+c\n/82IbGzCXpTy/fdZ8aTWr3eBB33xpCpUCLd1RZ5QdzctARYDi1R1+zVd3E3I6wpUAw7jWiGlAVR1\nnFfmCaC7qj52lesUeFiOH36AiRNd66JaNde6GDzY3ttIxybsRTFHjmTFk1q50o1bHzDAtTQqVQq3\ndUWSUItETaAH0B1oAqwGFuH8EmeDqTS/hDJ2U3q6m3Q6bhx8+ikMGuQE49ZbQ1KdUYBcTL/I4uTF\nTNk0xSbsRRsnT8L8+U4wkpLgjjuyAhDeeGO4rSsyFOY8iZJAB6AnLixHGrBEVf8WTOV5pbAC/B04\nAG+/DRMmQO3aTiweecT5MYzIxibsRTEpKVnxpD76CJo1c2LRuzc0b24jTYIgLDOuvYpvAO5X1feC\nqTwf9RVqFNjLl907O26cm0c0dKgTjGbNCs0EIwhswl4Uc+ECrFjhWhnz5zuB8AlG1642UiqfhLq7\naXSOB0ABVPVPwVScH8IZKnzvXteyePttaNTIObr794ey1psR8diEvSjHNxfDJxjbtrk4PL17O8e3\nhVbIlVCLxPN4guBHDPA0Lr5Soc1yioR8EpcuQWKia11s2OAm6D3zjMU+ixZymrA3pOUQ+t7Sl+vL\n2ljoqODIEfjwQycYH38MLVtmtTKaNrVuqRwoTJ/E9cAonEDMAP5XVY8EU3F+iASR8Cc5GcaPh3fe\nce/ps8+6/C3WEo4OfBP2pm6Zyoq9K4iPi2dgs4H0btKbSuVslE1UkJbmHN6+Vkbp0tCnjxOMO+90\n20ah5LiuCvwKF6k1AfiHqp4MpsJrIdJEwseFC24I+JtvujlDTz7pWhf18jUn3Qgnp9NOM3/nfGZu\nncnyPcu5q+5dDGw2kL639DXBiBZUYePGLMH49ls3H6N3b+jZE6pUCbeFYSPU3U1/Bx4G3gL+paop\nwVQUDJEqEv5s3+7mXCQkQLt2znfx4IMWwiaaOHPhDPN3zGfWtll8vPtjutTpkikYVcoX3y+aqOPQ\noaxuqeXL4bbbsrqlmjQJt3WFSqhFIgO4CFzK4bCqaqF15EaDSPg4f96lEn7zTef0fvppGDHC5XAx\nooeUCyks2LmAmVtn8vGej+l8c2cGNB3AQ7c8RNXrqobbPCOvnD/vwiz4WhkxMVmC0aVLkf8VF7Yh\nsIVNNImEP5s3O0f31KlurtCIEa71a76L6CL1Yiof7vyQmVtnsnT3UjrW7sjAZgN56JaHqHadjbCJ\nGlRdaBCfYOzZAz16OMHo0aNIzvouFJEQkXsA3wyBb1R1eTAVXgvRKhI+zp6F9993ju7t292s7iee\nsJwt0UjqxVQWfruQWVtnsWTXEtrf1J6BzQby8C0Pc0PMDeE2z8gP33/vcnvPn+/CLbRrl9XKaNgw\n3NYVCKHubroJmANcAL72drcFygMPq+r3wVScH6JdJPzZtctl00tIcHMthg2DIUPg5pvDbZmRX85e\nPMui5EXM3DqTxcmLub3W7QxoNoB+TftxY4yFlogqzp1zUT/nz3fCUalSlmB06hS13VKhFom5wFxV\nnZRt/zCgf6DcD6GgKImED1X48ksnFjNnQps2TjD69bMgg9HIuUvnWJy8mJlbZ7Lo20W0qdmGgc0G\n0q9pP6pXqB5u84z8kJHhMvD5uqX273f9xL17u1FTFSuG28I8E2qR2KmqOU4Vu9qxUFAURcKftDT3\nLiYkuERJffs6wYiPh5Ilw22dkV/OXzrPkl1LmLl1Jh/u/JDWNVozsNlA+jfrbzO9o5H9+7O6pT77\nDDp0yJqTEeHj3UMtEt8CjbN/O4tICWCnqhZap11RFwl/Dh+GadOcYBw96uJGDRvmJpQa0Ufa5TSW\nJC9h1rZZLNi5gFbVWzGg6QD6N+tPrdha4TbPyC+pqbB0qROMDz+EG27I6pbq0CHiftWFWiT+gQvD\n8StVTfX2VQBeBdJUdVQwFefLyGIkEv5s3gxTpjgfxk03OWf3oEEWsiZauXD5Ah/t+oiZW2eyYOcC\nmt/Y3LUwmvbnputvCrd5Rn7JyIA1a7K6pX74wcWU6t3bZeGLjQ23hSEXiTLAX4HhwD5vdx1gMvB7\nVb0YTMX5obiKhI/0dOdTS0hwP17i413r4oEHLNBgtHLh8gWW7V7GzK0zSdyRSNMbmmYKxs0VbRRD\nVLJ3b1a3VNeu8MIL4bao0IbAXgf4upaSVfVcMBVeC8VdJPw5c8aF3U9IcC2NRx5xLYz27W04bbRy\nMf0iy3YvY9bWWczbMY/GVRszsNlABjQbQJ2KNgvTuHbCkeP6GVV9K5gKrwUTiZzZuzdrOK2Ia10M\nHQp164bbMuNauZh+kU/2fMLMb2Yyb8c8GlZpmOn0tnzeRn4Jh0isV9XbgqnwWjCRuDqqsHq1E4sZ\nM1xk2mHDXPrgCOgWNa6RS+mXWL53OTO/mcncHXOpV6leZgujXuXIHlVjRAbhEIkNqto6mAqvBROJ\nvHPhgvNbJCS4SMoPPugE4957I27ghZEPLqVfYsV3K5j5zUw+2P4BdSrWYWCzgQxsPpD6leuH2zwj\nQgmHSNRW1QPBVHgtmEhcG0ePunAgkyfDwYNuZvewYdCiRbgtM4LhcsZlVuxdwcytTjBqX1+bh5o8\nRJ8mfWhVvRVizinDI9SjmwToCpxQ1U0i8ihwF5CMCx1+IZiK82WkiUTQbN3qhtNOmQLVqzuxGDwY\nbrToEVFNekY6n+37jHnb5zFvxzwyNIM+TfrQp0kf7qp7F2VKWjTJ4kyoReJfQEugHLADqAAsBrp4\n5w0JpuJ8GWkiUWCkp7tuqIQEmDfPJfEaNswN7S5XLtzWGcGgqmw9upV5O+aRuCORHcd30KNhD/o0\n7kPPRj0tiVIxJNQisQ0X/bUc8D1wo6pe9loYm1W10DotTCRCQ2oqzJnjBGP9ehg40AlGp042nLYo\ncCjlEAt2LiBxZyIr9q6g/U3tM1sZNlKqeBBqkcgcyZR9VFNhj3IykQg9+/fDe+85/8WlS04sHn88\n4kPTGHnk7MWzLNu9jHk75rFg5wJqVKhB3yZ96dOkD21rtaWElAi3iUYICLVIHMCF4BBcnmvfOrhQ\nHbWDqTg/mEgUHqouAGZCAkyfDrfc4gRj4MCoCn5pXIX0jHRWf7+aedvnkbgzkTMXztC7cW/6NOnD\nPfXuoVwp63csKoRaJMYAvoOSfV1VXw6m4vxgIhEeLl6ERYucYHz8sYuWPGwYdOsWteH1jRzYeXwn\niTsSSdyRyMbDG7mv/n30adyHBxo/YJn3opywpS8VkfaquiaYivNZn4lEmDl+3E3UmzzZZX3s1w8e\nfdQ5vm3+RdHh2LljfLjzQxJ3JrJs9zJaVW+V2S3VuGqhZQcwCohCFQkRaQ4MBgYBp1S1XS7lJwIP\nAEdUtWWAMvHA/wGlgWOqGh+gnIlEBLF7txOMGTPg0CHo39/FkLrjDhOMokTa5TQ+2fNJZiujYrmK\n9GnsHN8da3ekZAn7sCOdkIuEiNTDicJg4CIQB7RT1b15MO5OIBVIyEkkRKQS8AXQXVUPiEg1VT0W\n4FomEhHKt9+6zHozZsCRI8538cgjboRUCfOFFhkyNIO1B9c6wdiZyKGUQzzY+EH6NOlDt/rdiCkT\nE24TjRwItU9iJVAGmAnMUNXdIrJHVfM83kVE4oD5AUTiZ0ANVX0pD9cxkYgCduzIamGcPJklGB06\nmGAUNfac3MP8nfNJ3JHImu/X0DWuK30a9+HBxg9SM7ZmuM0zPAojx3ULYD7wvqquKmCR8HUzNQdi\ngbGqOiXAdUwkooytW10L4/333XyMRx5xy+232xyMosbJ8ydZnLyYxJ2JLE5eTJOqTTLnYzS/obmF\nCQkjhdHdVAnoh+tyaghUwXUPrc6jgXEEFol/Am2Ae4HrgJXAA6r6bQ5ldfTo0Znb8fHxxMfH58UE\nI8yowjffuNbF+++7AIQ+wWjb1gSjqHEx/SKffvcpiTsSmbdjHqVKlMr0Y3Sp04XSJUuH28QiTVJS\nEklJSZnbL7/8cqE6rqsDj+D8Ezeraq7ps3IRif8CyqvqGG97ArBYVWflUNZaEkUAVZcoyScYGRlZ\ngtG6tQlGUUNV2XR4U6YfY/fJ3fRs2JM+TfrQo2EPri97fbhNLPKEIwpsb1WdLyJxeXRexxFYJG4B\n/gl0B8oCq4FHVXVrDmVNJIoYqrBhQ5YPo0QJJxaPPuryYZhgFD0OnDngwoTsSOTzfZ/T6eZO9Gnc\nh95NelsGvhAR0UmHRGQaLopsNeAwMBrng0BVx3llngeeBDKA8ar6WoBrmUgUYVRh3boswShbNquF\n0by5CUZRJOVCCh/t+ojEnYl8uPND6lSsQ58mfXig0QMWJqQAiWiRKEhMJIoPqvDVV1mCUaFCVguj\nadNwW2eEgssZl/ly/5ck7khk4bcLOXbuGPc3uJ+eDXtyf4P7uSHmhnCbGLWEQyQKdaa1X70mEsWQ\njAyXlnXGDDdSqnLlrBZGkybhts4IFXtP7WVJ8hIWJS9i+d7lNKnahJ4Ne9KzUU9ur3W7TeLLB4Ux\nuqkr8IOq7hCRLkAnYKuqfhhMpfnFRMLIyICVK7ME44YbsgSjUaNwW2eEiovpF/li3xcsSl7EouRF\nHEo5RLcG3ejZsCfdG3SneoXq4TYxogn1PImxwO04P8Ji3FDVRTg/wwZVfT6YivNlpImE4UdGBnz+\nuROMWbOgVi0nFgMHQoMG4bbOCCUHzhxgcfJiFiUv4uPdH9OgSgN6NuxJj4Y96Fi7I6VKWORJf0It\nEltxk+nK45IO3aSqZ0WkNE4kmgdTcb6MNJEwApCeDp995obUzp4Ndeo4/8XAgRAXF27rjFByKf0S\nKw+sZNG3rpWx7/Q+7qt/Hz0a9qBHwx7Uiq0VbhPDTqhF4hucSJQFDuFE4pyIlAQ2WmY6I9K4fBlW\nrHAtjDlzoH79rBZGHRthWeQ5mHIw05exbPcy6lSsQ4+GPejZsCedb+5cLCfyhVokXsPNiC4DfATc\nTVZ30xZV/VUwFefLSBMJI59cuuRyeb//Psyd6/wWjz4KAwZA7UJLl2WEi8sZl1l9YDWLkhexOHkx\nySeSuafePZldUzdXzHUucJEg1CIhOEE4oqpbReQuoCMu53UNVf1ZMBXny0gTCSMILl1ySZNmzIB5\n89xQ2kcecYJRy3okigWHUw+zZNcSFicv5qNdH1GjQo3MEVN33HwHZUuVDbeJIaHQhsCKSBtcOI5H\ngD3AbFV9PZiK84OJhFFQXLwIS5c6wUhMhMaN4aGHoG9fJx42ca/ok56RzlcHv8p0gG8/tp34uPjM\nVkZcpbhwm1hghLol0QQnDI8CR3Ehw3+rqoXeu2siYYSCixedD2PePLeUK5clGJ06WQKl4sLRs0dZ\nunspi5IXsSR5CVWvq5opGHfVvSuqc36HWiQygAXAf6jqPm9fvkKFFxQmEkaoUYX1653/Yt48l3Gv\nd28nGN26Qfny4bbQKAwyNIN1h9ZljpjacmQLd9W9K9MB3qBKdI2xDrVIPIRrSXTAzZOYCbytqnHB\nVHgtmEgYhc2ePVktjLVr4d57nWA8+CBUqxZu64zC4sT5EyzdtTTTAX592eszBSM+Lp7ypSP710Oh\n+CREpALQFycYdwMJwAeq+lEwFecHEwkjnBw/DgsXulbGsmVw661Z3VI2ea/4kKEZbPxhY+bs7w0/\nbOCOm+/IdIA3qtIo4hIshSN2UxVgADBIVe8JpuL8YCJhRAppaW6k1Ny5MH++a1X4BKNtW0vTWpw4\nlXaKZbuXZTrAy5YsmykYd8fdHRF5vwtdJMKFiYQRifgCEPr8GCkpTiz69oW774YyZcJtoVFYqCqb\nj2zOFIz76t3Hi3e9GG6zTCQMI5LYscOJxdy5Lsd3jx5OMHr2hEqVwm2dURwxkTCMCOXwYdcdNXcu\nfPopdOzoBKNPH7i5eEz2NSIAEwnDiAJSU+Gjj1wrY8ECF3jQ58ewVK1GKDGRMIwo4/JlF+bc1y0F\nWYLRpQuUskjXRgFiImEYUYwqbN6cNR9j71544AEnGN27Q0z4B8cYUY6JhGEUIfbvd/Gk5s2DVaug\na1cnGL17Q3VLwGZcAyYShlFEOXUKFi1ygrF4MTRrltUtZfm9jbxiImEYxYALF1xuDF+3VGxslmB0\n6GAT+IzAmEgYRjEjI8PFkvIJxtGjrjvqgQdcfKnY2HBbaEQSJhKGUczZtcv5MRYudH6M9u3d5L2e\nPV0XlQ2vLd6YSBiGkUlqKixf7gRj0SI3esonGPfeCxUqhNtCo7AxkTAMI0dUYft2JxYLF7oYU+3b\nQ69eTjQsC1/xwETCMIw8kZoKn3ySJRrgxKJXL7jnHmtlFFVMJAzDyDeqsG1blmCsWeNGSflE45Zb\nrJVRVIh4kRCRicADwBFVbZnD8XhgHrDb2zVbVf+cQzkTCcMIESkpV7YySpTI8mVYKyO6iQaRuBNI\nBRKuIhK/VtU+uVzHRMIwCgFVF+Z80SK3rFnjItj6RMNaGdFFxIsEgIjEAfOvIhK/UdXeuVzDRMIw\nwkBKisvE5xONkiWvbGVYfKnIpiiIRFdgDnAA+B54XlW35lDORMIwwowqfPNNlmB89RV06pQlGk2a\nWCsj0igKIhELpKvqORHpCYxV1cY5lDORMIwI48yZK1sZpUplDbG9+25rZUQCUS8SOZTdA7RV1RPZ\n9uvo0aMzt+Pj44mPjy9YQw3DuGZUYcuWLMH4+mvXyvCJRuPG1sooDJKSkkhKSsrcfvnll6NbJESk\nOm7kk4pIe2CGqsblUM5aEoYRRfhaGb7Z32XKXNnKuO66cFtYPIj4loSITAO6AtWAw8BooDSAqo4T\nkeeAnwKXgXO4kU6rcriOiYRhRCm+VoZPMNauhc6ds+ZlNGpkrYxQEfEiUVCYSBhG0eH06StbGeXK\nZTm/4+PNl1GQmEgYhhHV+FK4+ibyrV0L7drBffe5pV07y/sdDCYShmEUKVJT4bPPYNkyt3z3nWtd\n+ETDhtnmDxMJwzCKNIcPu5Ahy5bB0qUu6ZJPMO69F2rWDLeFkY2JhGEYxQZVSE7OamUsXw61amWJ\nRteulpkvOyYShmEUW9LTYd26LNFYvRpat84SjQ4doHTpcFsZXkwkDMMwPM6dgy++yBKNb7+FO+/M\nEo0WLYqfP8NEwjAMIwDHjrkuKZ9onD3r/Bg+0bj55nBbGHpMJAzDMPLI7t1ufsayZe5v1apZgnH3\n3VCpUrgtLHhMJAzDMK6BjAzYuDGrlfHll9CsWZZodO4MZcuG28rgMZEwDMMoANLSYOXKLNHYutUJ\nhU80br3VZeyLNkwkDMMwQsDJk5CUlNU9dfy4S7LkE4169cJtYd4wkTAMwygE9u/PEoxly1x8KX9/\nRrVq4bYwZ0wkDMMwChlfhj6fYHz6qYtk6xONLl2gfPlwW+kwkTAMwwgzFy/CmjVZorFhA/zlL/CL\nX4TbMhMJwzCMiOPMGTexr0aNcFtiImEYhmFchYIQiSgc1GUYhmEUFiYShmEYRkBMJAzDMIyAmEgY\nhmEYATGRMAzDMAJiImEYhmEExETCMAzDCIiJhGEYhhEQEwnDMAwjICYShmEYRkBMJAzDMIyAmEgY\nhmEYAQmZSIjIRBE5LCKbcyl3u4hcFpF+obLFMAzDuDZC2ZJ4B+hxtQIiUhL4f8BiIKhIhUbeSEpK\nCrcJRQp7ngWLPc/II2QioaqfASdzKfZzYBZwNFR2GFdi/4QFiz3PgsWeZ+QRNp+EiNwE9AX+7e2y\nhBGGYRgRRjgd1/8AfudlExKsu8kwDCPiCGlmOhGJA+arasscju0mSxiqAeeAkaqamENZa2UYhmFc\nA8FmpitVUIbkF1Wt71sXkXdwYvIjgfDKWivDMAwjDIRMJERkGtAVqCYi+4HRQGkAVR0XqnoNwzCM\ngiOk3U2GYRhGdBPWGdci0kNEtovItyLyX1cp55tw199v314R2SQi60VkTeFYHNnk9jxFJF5ETnvP\nbNXdaoIAAAgcSURBVL2I/CGv5xZHruF5/tHvmL2ffuTl/fKe53oR2SIiSfk5t7gR5PPM37upqmFZ\ngJJAMhCH64baADQNUO4TYAHQ32//HqBKuOyPtCUvzxOIBxKv9bMoTkswz9M7Zu9n/p5lJeAboLa3\nXS2v5xa3JZjn6a3n690MZ0uiPZCsqntV9RIwHTdvIjtXm3BnDu0s8vo8c3pmeT23OBHM88zLseJE\nXp7lY8BsVT0AoKrH8nFucSOY5+kjz+9mOEXiJmC/3/YBb18muUy4U2CZiHwtIiNDaWiUkOvzxD2z\nziKyUUQWikizfJxb3AjmefqO2fvpyMuzbARUEZHl3jN7PB/nFjeCeZ6Qz3czbENgydsM68wJdyKS\nfcLdHap6SERuAJaKyHZ1oUCKK3l5nuuAm1X1nIj0BOYCjUNrVtQS7PO09zOLvDzL0kAb4F7gOmCl\niKzK47nFjWt+nqr6LdBFVQ/m9d0MZ0vie+Bmv+2bcYroT1tguojsAfoD/xKRPgCqesj7exT4ANcE\nK87k+jxVNUVVz3nri4DSIlLFK5fbZ1HcCOZ52vt5JXn5X98PfKSq51X1OPApcGsezy1uBPM8UdWD\n3t+8vZthdL6UAnbhnC9lyMUhhYsq289bvw6I9dZjgC+A+8N1L5Gw5OV5AtXJGvbcHth7LZ9FcViC\nfJ72fub/Wd4CLMM5Za8DNgPN7N0s8OeZ73cznDOuL4vIfwBLcDfytqpuE5FnveNXm3BXA5jjeqAo\nBbynqh+F2uZIJo/PcwDwUxG5jAuDMuhq54bjPiKFYJ4n9n5eQV6epapuF5HFwCYgAxivqlsB7N28\nkmCep4jUJ5/vpk2mMwzDMAJi6UsNwzCMgJhIGIZhGAExkTAMwzACYiJhGIZhBMREwjAMwwiIiYRh\nGIYREBMJIyAiUtUvDPYhETngra8TkdK5nBsnIpsDHBsvIk1DY3X4EJHeRT2UtYg8ISI1w22HUXjY\nPAkjT4jIaCBFVV/NQ9lSQG0C5Dc3QouIlFTV9BBdeznwvKqujQR7jNBjLQkjP4iIvCNXJn9K9f7G\ni8hnIjIP2IILQlZKRN4Vka0iMlNEyntlk0Skje98EfmziGwQkZUicqO3/wYRmSUia7ylcw7GlBSR\nV7zjG0XkGW//r0TkbW+9pYhsFpHyIjJGRKaIyJcislNERnhlKojIMhFZ6yVj6ePtjxORbSLylpe4\nZYmIlPOOjRKRb7x6p3r7hovI637nfuIdXyYiN3v7J4nIWBH5QkR2+T9Lv/uKE5dQJqdn90fvfjeL\nyDi/c5JE5P9E5CvgFyLyoIis8lp9S/2e6xgRmSwin4pLPtNPRP7u3fciT+ARkbbeNb8WkcUiUkNE\nBgDtgPe865bLqVwO9oy6hnfNiBTCHYfEluhYcDnKf4OLoeWf/CnF+xsPpAJ1ve04XDiATt7228Bv\nvPXlQBtvPQN4wFv/f8CL3vpUXCRVgDrA1hxsesavfFngK6AuLlrwCuBhb5/PhjHAeq9sVWAfUBMX\n2sAXz6Ya8K3fPVwCWnnb7wNDvPXvgdLe+vXe3yeA1731+cDj3vqTwAfe+iTgfW+9qa+ubPd1tWdX\n2a9cAvCg3zP9p9+xSn7rI4C/+z2DT717boULJ9LdOzYHF5q/NPAlUNXb/ygu9EP2zy63cv/Mfm+2\nRN8SzlDhRtFjjap+57e9X1VXeuvv4n5R/m+2cy6q6ofe+lqgm7d+H9BUJDM6fKyIXKde1FWP+4GW\n3i9cgOuBRqr6nYgMxwU1+7efDQrMU9ULwAWv66Q98CHwPyJyJ+7LuZbvlzewR1U3+dkX561vAqaK\nyFxciPDsdAQe8rv3v/nZMBdAXbyd6jmcC4Gf3T0i8ltcoLYquFbbAq/c+37n3ywiM3BxpMoAu/3q\nX6Sq6SKyBSihqku8Y5u9+2sMNMflHAAnKAf9ru37UJrkUs7fHiNKMZEw8stlvG5KESmB+wLycTZb\nWX+Hl5BzHPxLfusZZL2TAnRQ1Yu52PMfqro0h/2NgRRyT1CjwFBcC6KN9+W5ByjnHb/gVzYdKO+t\nPwDcBfQGXhSRlvw429f/394du0YRRHEc//4KSZBgimAbrKwtUmghwX9AG20UQbFT1NZSrLQRgmCE\nWAhiZWuhNlopSjiNkEDAwkYQwUJMZeGzeHPcureTeF3u8vtUe+y7m7m5Y2fmzbJT2/3r93/EDLWd\npCngfqnnV+U60XQjrtn+98jZwzNJi+QM4p/yI+KPpK72F7AeEUMpvlbddopr/x9sDHlNwkb1hdzn\nA+AkmXKomZd0tByfBUbZdOcljVy2pCMdMS+Ay408+mFJ+yXNAkvAcWCukfcXcErSlKQ5MkX2npyB\nfC8dxAkyZVWlHDbPR8Rr4AYwC8y0wt4weCrsOTLFM4qutpsmL9A/JM0AZ9pVaxwfYDCqv1CJqdkE\nDvbLl7RPg133fpXP3inOJoQ7CRtFACvAoqSPZEplq3W+ebwJXJG0QV5IlxnWfk//9TVgoSz8rpPr\nD20PgQ2gp7zddpkcCd8l8+GfgUvAbeUuXEGmiV4Bb4FbEfENeFLK+gScB5qPom7PfoJMqzwu8T1g\nKSJ+tup/FbgoaY3sJK5v8527DLVdKWOFTDE9B9511K3vJvBU0iq5P3w0YrYrPyL3TT4N3Cm/8wfg\nWDn/CHggqUdeP2pxNiF8C6ztGSU9sxUR7XWRXUXSIXz7sO0SnknYXjMuo6JxqadNOM8kzMysyjMJ\nMzOrcidhZmZV7iTMzKzKnYSZmVW5kzAzsyp3EmZmVvUXtsaAFgOeV8UAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x3062e30>"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex12-pg293"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "print (\"Example 5.12\")\n",
      "#plot the graphs\n",
      "%matplotlib inline\n",
      "import numpy\n",
      "import matplotlib\n",
      "from matplotlib import pyplot\n",
      "import warnings\n",
      "warnings.filterwarnings('ignore')\n",
      "gm=1.1\n",
      "M0=2.5\n",
      "g1=numpy.zeros(40)\n",
      "\n",
      "z0=numpy.linspace(0,4,40)\n",
      "i=1;\n",
      "z1=numpy.linspace(1.1,1.4,4)\n",
      "for gm in z1:\n",
      "    gc1=0;\n",
      "    for M in z0:\n",
      "\t\tp0=(1+(gm-1)/2*(M**2))**(gm/(gm-1))\n",
      "\t\tp20=.4*p0-.5*p0\n",
      "\t\tM=3\n",
      "\t\tp42=0.37\n",
      "\t\tNPR=p20*p42\n",
      "\t\tg1[gc1]=p0\n",
      "\t\tgc1=gc1+1;\n",
      "\t\tpyplot.plot(z0,g1)\n",
      "\t\tpyplot.title(\"Total-to-static pressure ratio\")\n",
      "\t\tpyplot.xlabel(\"Flight Mach no. (M0)\")\n",
      "\t\tpyplot.ylabel(\"pt0/p\")\n",
      "\t\tpyplot.legend([\"gamma=1.1\",\"gamma=1.2\",\"gamma=1.3\",\"gamma=1.4\"])\n",
      "\t\ti=i+1;\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 5.12\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VFX6wPHvm94rpBACAaRIkyZVIYggRUBUilhQFEXW\ngu7qYgHR3R+2ta0u9l2xLMpaEEQUBEEQAZUivYeahIT0nkzO74+ZTGbSCGFCfT/PM4/3nnvuvWcm\nMu+cc+45R4wxKKWUUlVxO9sFUEopde7SIKGUUqpaGiSUUkpVS4OEUkqpammQUEopVS0NEkoppaql\nQULVOxEpFZHmZ7scdSEiV4rIzrNdjguRiDQRkWwRkbNdFlU9DRIXMRHJsf0jzbZ9kec57N9UzTnx\nInLYhWVw6fVO99oVA5oxZpUxpo3rS3fxEZEEEbmqbN8Yc8gYE2h0sNY5zeNsF0CdPcaYgLJtETkA\n3GmMWX4Wi3SuOKO/bEXEwxhTcibvWUUZ3I0xlno+33CGP1t1+rQmoSoREW8ReVVEjtper4iIl4j4\nA4uBRrbaRpaIRIlIdxH5RUTSReSYiLwuIp61uE9116vy/jVcZ6iIbLOdf0REHhYRv1Mtq4j8ZLvk\nZts5oyvWRkQkVkS+FJHjIpIqIq9XU6aZIvK5iHxqu/fvItLR4XiCiDwqIn8A2SLiJiI9RWSNrWyb\nRKSfQ/7bRWSf7Vr7RWS8Lf0SEVkpIhkikiIin9rS42y1IjeHa6wQkTsdrveziLwsIqnAU7a/8T9E\n5KCIJInImyLiU837q+r85iKy3Pa5pIjIxyISbMv/EdAEWGj7bP9SsYwi0khEFojICRHZIyJ3Vfc3\nV2eQMUZf+gI4AFxl234GWAM0sL1+Bp6xHesHHK5wbhegO9YfHU2B7cCDDsdLgebV3Leq61V7/2qu\nkQj0sW0HA51dVVYgvuwagDuwGXgJ8AW8y+5bRZlmAkXA9bbz/gzsB9xtxxOADUCM7ToxQCow2Hb8\natt+OOAPZAItbccigba27bnAY7ZtL6C3bTvO9l7cHMr0IzDRtn07UAz8yfZZ+ACvAPOBECAAWADM\nqub9VXV+C2AA4Gn7u60EXqnq/7Gqygj8BLxhex+XAceB/mf738bF/tKahKrKeKxfyqnGmFTgaeBW\n27FKzQXGmA3GmPXGmFJjzEHgHaxf0LVRVfNDTfevShHQTkSCjDGZxpiN9VTW7kA08IgxJt8YU2iM\n+bmG/L8ZY7401maYl7F+kfYsKwrwT2PMUWNMIXAL8K0x5jtbOX8AfgOG2fKWAh1ExNcYk2yM2e7w\n3uNEJMYYU2SMWVPL9wJwzBjzL2NMKVAITAIeNsZkGGNygGeBcbU53xhTYIzZZ4xZZowptv3dXqGW\nn62IxAK9gb/a3sdm4D3gtlN4P6oeaJBQVWkEHHTYP2RLq5KItBKRb0QkUUQygf/D+gu4Yr6yp1my\nRSSrLvcXkccdrjHbdvwGYCiQYGtS6Uk1alvWasQCB21fqrVxpGzDGGNs+46fo2OnelNgtK2pKV1E\n0oE+QJQxJg8YC0wGjtnK39p23qNYg+F6EdkqInfUsmwV798Q8AN+d7j/Yqw1gtqcj4hE2prXjtg+\n24+o/WfbCEgzxuQ6pB3CWsNSZ5EGCVWVY1ibAso0saWB9VdtRW9ibba5xBgTDDxBFf9vmfKnWQKN\nMUE1XK/a+xtjZjlcY4ot7TdjzHVYv+jmA/NOt6zVOAw0ERH3WuaPLduwtbs3pvxzrFi+Q8BHxphQ\nh1egMeYFAGPMEmPMICAK2Am8a0tPNsbcbYyJAe4BZov16ayyL1s/h3tEVSif4/1TgXyszVhl9w9x\n+DtVpeLnOwuwAO1tn+2tOH+2NT3FdAwIE5EAh7QmOARadXZokFBVmQs8KSINRKQBMAPrr0KAZCBc\nRBy/PAKAbCBPRNoA957Cvaq6Xk33dyIiniJys4gE25p1srF+UdW1rMlY29arsh5r/8dzIuInIj4i\n0ruG99ZVREaJiAcwFSgA1laT92NguIgMEhF327XjRSRGRCJEZKRYO/qLsQYAi+39jxaRxrZrZGBr\nmjLGpABHgVtt15tYw/vCVjt6F3hVRBrarh0jIoNqeH8VBdjKliUiMcAjFY5X+9kaYw5j7Yd6VqwP\nLnQEJto+F3UWaZBQVfk71vbwP2yv32xpGGN2Yv0S3y8iaSISBfwFaz9CFtY2/k9x/tVY7S/Iaq5X\n7f2rcQtwwNbEcTdw82mUdSYwx9bkcqPtmLFdzwIMBy7B+sv/MDCmurcGfI21mSjNVqbrTTWPiRpj\njgAjgcexdtgewtrZLVj/nT6E9Uv/BHAl5cGtG7BWRLJt93vAGJNgOzYJ6xd1KtAW6wMAjuWr+Hf5\nK7DXdr1MYCnQqob3V/H8p7E+GJAJLAS+qJDnWazBP11EHna4TpmbsNYgjwFfAjOMPpJ91om1qbSe\nLm5tN/3UIak5MB3rr4PPsLbDJgBjjDEZtnMew/oLwoL1f/gl9VZApeqJiDyFtUmrpg53pc559VqT\nMMbsMsZ0NsZ0BroCecBXwDRgqTGmFbDMto+ItMX6y6stMBhr+6rWdtT5SAeNqQvCmfwCvhrYa2t7\nHAHMsaXPAa6zbY8E5toeoUvAWvXtfgbLqJSrVNUco9R550xOyzEOa/swQKQxJtm2nYx1cBBYH4Nz\n7Ng7gj4Cp85Dxpinz3YZlHKFM1KTEOuUCsOB/1U8Znt+vKZfXPprTCmlzpIzVZMYAvxueywPIFlE\noowxSSISjfVpDrA+vRHrcF5jW5qdiGjQUEqpOjDGnHJf2Znqk7iJ8qYmsM4JM8G2PQHrAKiy9HG2\nicaaAS2xPpvu5EzNWXI6r6eeeuqsl0HLqeU8X8uo5XT9q67qvSZhGwB0NdZntss8B8wT64yUCdie\nNTfGbBeReVhHxJYAU8zpvDullFKnpd6DhLHOxdKgQloa1sBRVf5ZWIf3K6WUOst0DEI9iY+PP9tF\nqBUtp2udD+U8H8oIWs5zRb2OuK4PIqItUEopdYpEBFOHjmtdvlSpi5iIDgy/ELnyh7QGCaUucloz\nv7C4OvBrn4RSSqlqaZBQSilVLQ0SSimlqqVBQimlVLU0SCil1Bk2b948evfujb+/P/37968xb1JS\nEiNGjCAmJgY3NzcOHTp0hkpppUFCKaXOsPDwcB5++GGmTZt20rxubm4MHTqUL7744gyUrIr7n5W7\nKqXUSWzYsIHOnTsTFBTEmDFjGDt2LNOnTycjI4Nrr72WiIgIwsLCGD58OEePlk8WHR8fz/Tp0+nT\npw+BgYGMGDGC1NRUbr75ZoKDg+nevTsHDx6053dzc+PNN9+kZcuWBAUFMWPGDPbt20evXr0ICQlh\n3LhxFBcXA5z03rU1YMAAbrzxRqKjo0+aNyIigsmTJ9OtW7dTvo8raJBQSp1zioqKGDVqFBMnTiQ9\nPZ2bbrqJ+fPnIyKUlpZy5513cujQIQ4dOoSvry/33Xef0/mfffYZH3/8MUePHrV/4d95552kpaVx\n6aWX8vTTzmtCLVmyhI0bN7J27Vqef/55Jk2axNy5czl06BBbtmxh7lzrJNYnu/eUKVMIDQ2t8tWp\nU6f6/+Dqw9mevrYO090apZRrnOzfE7jmdapWrlxpYmJinNKuuOIKM3369Ep5N27caEJDQ+378fHx\nZtasWfb9P//5z2bo0KH2/YULF5pOnTrZ90XErFmzxr7ftWtX88ILLzidP3Xq1CrLWfHep+rdd981\n8fHxtcpbXFxsRMQcPHiwxnzV/U1t6af8nasjrpVS1Tpbg7GPHTtGTIzzysWxsdb1yPLz85k6dSrf\nf/896enpAOTk5GCMsY82joyMtJ/n4+NDRESE035OTo7TtR3z+/r6VtpPSkoCIC8vj4ceeqjGe5+L\nWg0dVedztblJKXXOiY6OrtTWf+jQIYwx/OMf/2D37t2sX7+ezMxMVq5cWePCOq788n7ppZdqvPfk\nyZMJDAys8tWhQ4d6LVtNDvrl1flcDRJKqXNO7969cXd354033qCkpISvv/6aX3/9FbD+cvf19SU4\nOJi0tLRK/QvgPB9VdcGjJtWdf7J7v/XWW2RnZ1f52rJliz1faWkpBQUFFBcXU1paSmFhob1zvCoF\nBQUUFBRU2q6tIo+6ByMNEkqpc46npydffvkl77//PqGhoXzyySdce+21+Pj4MHXqVPLz82nQoAG9\ne/dmyJAhlX6RO+6LyEmPV1Td+bW5d218+OGH+Pn5MWXKFFatWoWvry/33HOP/XhgYCA///yzfd/P\nz4+goCBEhDZt2uDv71/re910zV3gm3vKZSyj60kodRGzrTFwtotRKz169GDKlClMmDDhbBflnFbx\nbzro8j/zQ/f5mNn767SehNYklFLnpJ9++omkpCRKSkqYM2cOW7duZfDgwWe7WOed5PQo3PzS63y+\nPt2klDon7dq1izFjxpCbm0uLFi34/PPPnZ46UrWTlB6H8ck5ecZqaHOTUhex86m5SdVOxb+pp88G\nLH+9HPNMqTY3KaWUKvf4lOmUeAbjL351voYGCaWUukBt3pSGR+AmYhvG1vka9R4kRCRERD4XkR0i\nsl1EeohImIgsFZHdIrJEREIc8j8mIntEZKeIDKrv8iml1IUqJT2KwPCthPqG1vkaZ6Im8RrwrTHm\nUqAjsBOYBiw1xrQCltn2EZG2wFigLTAYmC0iWttRSqk6SEqLJaTBfsJ8w+p8jXr9AhaRYOBKY8y/\nAYwxJcaYTGAEMMeWbQ5wnW17JDDXGFNsjEkA9gLd67OMSil1oUrNbINfaOK5GySAZkCKiPxHRDaI\nyLsi4g9EGmOSbXmSgbLn2hoBRxzOPwI4z/KllFLqpL75fBH5he3wC88lzOfcDRIeQBdgtjGmC5CL\nrWmpTNkUtjVco9KxmTNn2l8rVqxwYXGVUqr+ncrypYsWLeKKK64gNDSU6OhoJk2aVGkW26o8+/Sb\nCE/iU+TOpk831bms9T2Y7ghwxBjzq23/c+AxIElEoowxSSISDRy3HT8KOHbDN7alOZk5c2b9lVgp\npepZ2fKlO3bsYPny5TXmzcrKYsaMGfTt25eCggLGjx/PI488wptvvlnjeSKdCAnqQYcxJVza8FJW\nzFlRp7LWa03CGJMEHBaRVrakq4FtwEKgbAKWCcB82/YCYJyIeIlIM6AlsL4+y6iUOjfp8qVWN910\nE4MGDcLHx4eQkBAmTZrkNPlfdZLSYogM3U9aQdo53ScBcD/wiYhsxvp00/8BzwEDRWQ3cJVtH2PM\ndmAesB1YDEzR4dVKXXx0+dLqrVy5kvbt2580X0pGS6LCjpGWf3pBot7nbjLGbAYur+LQ1dXknwXM\nqtdCKaVqRZ52zaI45qlT+623du1aLBYL999/PwCjRo2ie3frg45hYWGMGlW+0trjjz/OVVddZd8X\nEe644w6aNWsGwJAhQ9ixY4c9z+jRo5k+fbrT/R599FECAgJo27YtHTp0YMiQIcTFxdnP37hxI7fd\ndttJ7z179mxmz559Su/1VCxdupQPP/yQ9etP3sCSndee0OC5HD7Xg4RS6vx1ql/urqLLl1a2du1a\nbr75Zr744gsuueSSGvPe0P9O4Hn+8daTDPz+6nO+uUkppU6JLl/qbOPGjYwcOZIPPvjgpE9DAWRk\nhePvu4XmrZuRnp9OqM+5PeJaKaVOiS5fWq5sHY033niDoUOH1qr8SWnRNAzZg6XUQlZhFiE+ISc/\nqRoaJJRS5xxdvrR8+dKXXnqJEydOMHHixBprJY6S05sRHXqEzMJMAr0DcXdzP+UyltH1JJS6iJ1P\n60no8qW1IyK4u+9iWM+XeGnBI1zz8TXse2Bf2d9a15NQSl0YdPnSurNYYhh/14DTfvwV9OkmpdQ5\nSpcvrTsf7+2MvX0M3+/9/rQ6rUGDhFLqHDVp0iQmTZp0totxXgoP2gVc7pKahDY3KaXUBSYq9BCA\nBgmllFKVRYRaB/9pkFBKKVVJy5aegAYJpZRSVXjto5cASC84vdHWoEFCKaUuWFqTUEopVS0NEkop\ndR46leVLf/zxRzp27EhoaChhYWEMGjSI7du31+o+GiSUUuo8VLZ86bRp006at127dixevJj09HSS\nk5Pp3LkzEydOrNV9NEgopS5YunypVUREhH1tjdLSUtzc3Gp1njHG2nHtqx3XSqkLjC5f6uzQoUOE\nhobi5+fHokWLeP/99096Tl5xHu7ijo+HT53vC2BfMON8eVmLrJRyhZP+ewLXvE7RypUrTUxMjFPa\nFVdcYaZPn14p78aNG01oaKh9Pz4+3syaNcu+/+c//9kMHTrUvr9w4ULTqVMn+76ImDVr1tj3u3bt\nal544QWn86dOnVplOSve+1S9++67Jj4+vtb509LSzC233GJGjBhRbZ6yv+mhjEMm5qWYiumn/J2r\nczcppap3lqYR1+VLqxYaGso//vEPoqOjycrKIigoqNq8ruiPAG1uUkqdg3T50uoVFxfj5uaGt7d3\njfnSC9I1SCilLky6fGm5r776it27d1NaWkpKSgoPP/wwQ4cOPWmQSMtPO+1Oa9AgoZQ6B+nypeXL\nlx49epTBgwcTFBREly5dCA0NZc6cOSe9R1p+GmE+p1+TqPflS0UkAcgCLECxMaa7iIQBnwFNgQRg\njDEmw5b/MWCiLf8DxpglFa5n6rvMSl0sdPnSC0/Z3/SFn18gJTeFFwe96Jh+Ti5faoB4Y0xnY0x3\nW9o0YKkxphWwzLaPiLQFxgJtgcHAbBHR2o5SFyFdvvT0nG8d1xWj1wigrL40B7jOtj0SmGuMKTbG\nJAB7ge4opS46u3btolOnToSGhvLKK6/o8qWnKD3fNR3XZ+IRWAP8ICIW4G1jzLtApDEm2XY8GSj7\nyzcC1jqcewRwfg5OKXVR0OVLT09agWs6rs9EkOhjjEkUkYbAUhHZ6XjQGOtglhrOr3Rs5syZ9u34\n+Hji4+NdVFSllLow7Nuwj29Wf8P20NpNBlideu+4drqZyFNADjAJaz9FkohEAz8aY9qIyDQAY8xz\ntvzfAU8ZY9Y5XEM7rpVykfOp41rVTtnftPPbnXl/xPt0ie7imH5udVyLiJ+IBNq2/YFBwBZgAVD2\niMIEYL5tewEwTkS8RKQZ0BJYX59lVEqpC5GrOq7ru7kpEvjK9hyxB/CJMWaJiPwGzBORO7E9Agtg\njNkuIvOA7UAJMEWrDUopdepc1XF9RpubXEGbm5RyHW1uuvCICEUlRfj+ny/F04vtg/3OyeYmpZRS\nZ17ZOhKumLdKg4RSSp1hp7J8qaOJEyfi5ubG/v37a8znqv4IODOPwCqllHJQtnzpjh07WL58ea3O\nWb16Nfv3769V7cCVQUJrEkqpc5IuX1qupKSEBx54gNdff71WfUiu6rQGDRJKqXOQLl/q7JVXXqFf\nv35VrklRlbT8NEJ9Tn+0NWhzk1KqBrJihUuuY05xVoS1a9disVi4//77ARg1ahTdu1uncQsLC2PU\nqFH2vI8//jhXXXWVfV9EuOOOO2jWrBkAQ4YMYceOHfY8o0ePZvr06U73e/TRRwkICKBt27Z06NCB\nIUOGEBcXZz9/48aN3HbbbSe99+zZs5k9e/YpvdeTOXz4MO+88w4bNmyo9TnaJ6GUOiNO9cvdVXT5\n0nJTp05lxowZBAYG2puaTtbkpH0SSqkLmi5fWm758uU88sgjREdH06hRIwB69erFp59+Wu05WpNQ\nSl3QHJcvnTx5MosWLeLXX3+lf//+5/zypW+99dZJr19aWkpRUZHT8qVubm54enpWyrtnzx5KS0vt\nZYmOjuabb76hY8eO1V7fVetbg9YklFLnIF2+tHz50gYNGhAREUFERASRkZGICA0aNMDHx6fa67uy\n41qn5VDqInY+Tcuhy5fWjojQ490evHLNK/SK7eWUrtNyKKUuGLp8ad1pn4RS6oK3a9cuxowZQ25u\nLi1atNDlS0+BK4OENjcpdRE7n5qbVO2ICO5Pu1PwZAEebh5O6drcpJRSCj9PP6cAcTo0SCil1AXG\nVU1NoEFCKaUuOK4MEtpxrdRFrr6mk1Bnj9YklFIuUTalhL7Oj1fTGE9uGzwIYwxffmkYMaL8WPTP\nP3O0oIDPtn6mQUIppS42E4aNJjW9mGHjJgKQnAxRUeXHA93dySopceloa9AgoZRS54VSyzFaNw1i\nzISxACQlOQeJIA8PsiwWl46RAA0SSil1XkjNPEJcRPn06ZWChLs72RoklFLq4rT3WBIBPjUECQ8P\ne3PTeRUkRMRdRDaKyELbfpiILBWR3SKyRERCHPI+JiJ7RGSniAyq77IppdT54K5Rt3I0pYiufYfY\n06qqSWRZLC6dJhzOTE3iQWA7UDb2fxqw1BjTClhm20dE2gJjgbbAYGC2iGhNRyl10SvKT6BVkwAe\nePxhe1pSEjhOZeXUce17nnRci0hjYCjwHlD2MPYIYI5tew5wnW17JDDXGFNsjEkA9gLd67N8Sil1\nPkjPOUJcRCP7vjHWp5scg8T52nH9CvAIUOqQFmmMSbZtJwNlb7MRcMQh3xHAeZFbpZS6CO1JTCLI\nr/zrMCsLPD3B3788T5C7O9n10CdRbyOuReRa4LgxZqOIxFeVxxhjRKSmKSirPDZz5kz7dnx8PPFn\nabF2pZSqbw/cNpmDRwu4cUh5w0rF/giw1iQOFRbag8SKFStYsWLFad+/Pqfl6A2MEJGhgA8QJCIf\nAckiEmWMSRKRaOC4Lf9RINbh/Ma2tEocg4RSSl3IMo7vpHljX/7+xnP2tKqCRKC7O2mFORhj8PXw\nrfQDuqq1wGuj3pqbjDGPG2NijTHNgHHAcmPMrcACoGz9wQnAfNv2AmCciHiJSDOgJbC+vsqnlFLn\ng8zco7SIbuSUVl1NIi0/nVDfUJfOx3Umnx4qazp6DhgoIruBq2z7GGO2A/OwPgm1GJhidDUUpdRF\n7vCJYwT7VQ4SFRfpC3J3d/njr3CGZoE1xqwEVtq204Crq8k3C5h1JsqklFLnusnX30xSej6D28U6\npVectwmsNYnM/DQiXRwkTlqTEKsbROQVEXlZREaJzi2slFL1rm1sPikp8FTfnk7pVTY3ubuTXZjh\n8ppEbZqbZgP3AH8AW23b/3JpKZRSSlUS2GAPfj4+eGdnO6VX13GdWw9BojbNTf2BtsaYUgAR+QBr\nv4FSSql6MvWWyTTruAd/rwBIT3c6Vl3HdX5hJqFBrhttDbWrSewFmjjsN7GlKaWUqieNg9M5uC2K\n/q0ugbQ0p2NVdVz7urlhKc4k2IVrSUDtgkQQsENEVorICqy1iEARWSgiC1xaGqWUUgC0aH6E3Xv8\niGvc2ClIlJZCSgpERDjnFxE8LTn4eYfgSrVpbppRRZrBOheTPqKqlFIu9sqMF+jU/Q/2HotgZO84\n+O03+7ETJyA4GLy8Kp/nUZKDj1ewS8tSbZAQke+B74DFxpidLr2rUkqpauUe20BhYiwxLaKJa9kS\nliyxH6uqP6KMWHLwdHGQqKm56XYgA5hpWw/iLREZKSL+NZyjlFLqNLVqkcLhfa1ISEggrm1bp+am\nmoIExVl4eAa5tCzVBgljTKIx5j/GmHFAN+BD23+XiMgyEXnUpSVRSinF+lVradB6E5v3eHPkyBGa\ntGtX6yBRWpyFm2egS8tTq2k5jDEWY8waY8x0Y0wfrHMxVTn5nlJKqbqb/+5rWHID+eur/6BBgwZ4\nh4aCxQIFBUDVTzaVKSnOwri4JlFjx7WIDMa6KFDZROZHgK+NMd8Bn7i0JEoppWjXPIPEPe3wiUsg\nLi4ORCAszDpWIjq62pqEpdRCSUkeJW5+Li1PTR3Xr2GdifVDymsNjYEHRGSoMeYBl5ZEKaUucgd2\n7Sey9RZ+WNQXSbAFCYDQUGuTU3Q0ycnQqVPlczMKMvD2DCSn1LUPndbU3DTUGDPUGPOpMWaV7TUX\nGIZ1SVKllFIu9Pr0JxDPIu6Z/ndrp3VZkCirSVB9n0Rafhq+3sFkl5S4tEw1BYkCEalqjenuQL5L\nS6GUUor2l+SSuvMymrVuXjlI2DqvawoSAd4hZFksLi1TTX0StwNvikgg5WtPNwaybMeUUkq5UMwl\nu/hldRcAEhISGDdunPVAWXMTNQeJIJ9Qslxck6g2SBhjfge6i0gU1uAAcNQYk+jSEiillOLeUeMZ\nc0ciTS7rD1Blc1NREWRmQnh45fPT8tMI9gl1eU2iNo/AfmKM+c32SgQQkWUuLYVSSl3kOjYvIH1X\nJyY+eDcWi8U6RqKJbW5VW3PT8ePQsCG4VfHNXbYqXfaZChIi4isi4UBDEQkTkXDbf+MofyRWKaWU\nCzS5ZD979kUDcOzYMesYCW9v60Fbc1NVK9KVSctPI9zX9c1NNdUk7gF+A1oDv9u2fwcWAG+4tBRK\nKXURmzL6Dvya7iGt1BokDh48WN7UBPbmpppGW6flpxHhF37mOq6NMa8Cr4rI/YAXcCVQCqwG3ndp\nKZRS6iLWMiqX7L3teP6dV4EK/RFgb246WZC4LLzdGa1JlOkLtAVew1qDaIt1gJ1SSikXaN7iEAf2\nNbXvJyQk0LRp+X5Zc9PJgkS0f4Oz0nHdzhhzpzHmR2PMcmPMXUA7l5ZCKaUuUk8/8ARBLbey44iv\nPa3KmoStuam6eZvSC9KJ8W9AdkkJxrhu1HVtgsQGEelVtiMiPbH2TSillDpNXoX7yD/SnLe+KG+g\nqWtzU0O/cLzc3MgvLXVZ+WoTJLoBP4vIQRFJANYA3URki4j8Ud1JIuIjIutEZJOIbBeRZ23pYSKy\nVER2i8gSEQlxOOcxEdkjIjtFZNBpvjellDrntWyexOG9LZzSKgWJkBDIzCQ52dQYJMJ8wwh0d6/U\nL3HrkBF1Ll9tli8dXJcLG2MKRKS/MSZPRDyA1SJyBTACWGqMeUFE/gpMA6aJSFtgLNY+jxjgBxFp\nZYxxXUhUSqlzyBcfzSOszSZ+/Kh8OjyLxcLhw4fLx0gAuLtDQABJx0qJinKvdB1jDGn5aYT6hBLk\n4UGWxYJjLEnO/LnOZTxpkDDGJNT14saYPNumF+AOpGMNEv1s6XOAFVgDxUhgrjGmGEgQkb1Y54la\nW9f7K6V1G8N6AAAgAElEQVTUuWzzsvlc0b8B//r8v/a0xMREwsPD8fHxcc4cFkZSslRZk8gpysHb\n3RtvD2+C3N2dBtRNnzCe/YlZdS5jrRYdqisRcRORTUAy8KMxZhsQaYxJtmVJBsq6YRpRPkcUtm0d\ntKeUumC1DvEg+Vgjp7RKTU02uUHRFBVBUBVrCpWNtgasNQmH5qauXbdy6EjdO7Jr09xUZ7amok4i\nEgx8LyL9Kxw3IlJT6as8NnPmTPt2fHw88fHxp19YpZQ6g+4YNonxHU+wJrPAKb26IJHs35yo0EJE\nfCsdS8tPI9Q3FIAgd3eyLBZWrFjBjKn3ERC2Hx8fP4pzsutUznoNEmWMMZkisgjoCiSLSJQxJklE\nooHjtmxHgViH0xpTzRKpjkFCKaXORzGZHShqvZIf8pN4yiG9uiCR5BNHVGAeUHWQKKtJlHVcj4yP\nZ9pkNz78XxtuuPEyPvjggzqVs96am0SkQdmTS2INfQOBjVin9ZhgyzYBmG/bXgCMExEvEWmGdVW8\n9fVVPqWUOlsO7NpPu31t8Iw6yLaMPIotxfZj1dYkPGKI8qu6b8ExSJR1XM+44ya8Qk6QZsLp0qVL\nnctan30S0cByW5/EOmChMWYZ8BwwUER2A1fZ9jHGbAfmAduBxcAU48oRIUopdY548d63kYbH8fEL\nwsuzASl5KfZj1dYkJJoo7/Qqr5eWn0aYjy1IuLuTXVJCr55b2bqmNxk5macVJOqtuckYswWoVDJj\nTBpwdTXnzAJm1VeZlFLqXNDmxOUc67qENkEdifBPITknmUaB1g7saoOEpSFRHqlVXi8937njOv/p\nv+I5MJ3ozqPY9v4kLrvssjqXtV6fblJKKeXs9mvuovm+cGi2BX//dkQGRHI819o1W+UYCZukojAi\nSarymo4d1wX7D9Kz51a2rOlFmy7taNq0KQEBAXUurwYJpZQ6g5rmdGZX60SGjrkUf/92RPhHkJxr\nHRVQ7RgJICk/mKiSKp/lceqTcPv4TTwDMmnSfTQbNmw4raYm0CChlFJnzLpVa2m3tzW7gn8jN3cb\nfn7tiPSPJDnHGiSqa2oCSMrxJ6r4cJXH0gqsQeLArv306PkHW9b05IZbx2iQUEqp88lHMxZQ4FPC\ntNl/Ii9vu7W5yb+8uammIJGc6UNU3v4qj5XVJD584XE8/LJZ3GoAgAYJpZQ6n7RJ7cb2pltpFOeB\nu3sgnp6hTs1N1QUJYyDphCeRWXuqvG56fjr5h/Lo0Wszf/zSk/Q+l2OxWNi8eTOdO3c+rTJrkFBK\nqTNgwsBJxB0IJbvRIXJzt+Hvb12WJzIg8qRBIjMTvL3BLzOxymun5aex4aOPcffNI7TPaLJKSti1\naxfR0dEEBwefVrk1SCil1BnQPLcLO9oc5V+f/tPeHwHUqrnJvthQaSnk51c6fjjhMJf32sTmNT0Z\nfP0IsiwWlzQ1gQYJpZSqd9988Q3tdrdiV/CvAE41iQj/iJN2XFsXGxLrMqbpzgPqCksK+VveWNy9\nCug77iH7YDoNEkopdZ5Y8vo6cgKLeG/ZawD2TmuwBomUvBSKS4qrHyNRtiKdbRlTRxs2/87lvTay\n6ZcedL+yJ/7u7uSXlvK7BgmllDo/XJrSle1NNgNgTCl5eTvw82sLgLeHNwFeAew8sLPaMRLJyQ5B\nIi3N6diSl+bg5pdDv5seAkBE8Bdh48aNGiSUUupcN2HA3TQ+HAStrDWAgoJDuLsH4+lpX7mZCP8I\nNu3cVP0YibKaRGioU5D407gH6OYNCYcj6H5lT3u6X3IywSEhhIeHn3b5NUgopVQ9uiSvG9vbHOaF\nd58HIC+vvD+iTKR/JDv37qwxSERGUqm5qfGBTpR0+42REx53yu+xZw+tT2O+JkcaJJRSqp688+o7\ntNvVgl2Bv9rTHDuty0QGRLLvwL6T1yQcmpvuHHA/bXfH4tNiKyEhfZ3yl+7ZQ/OOHV3yHjRIKKVU\nPdn+9THSwwr497I37GlVBYkIvwgOHTxE06ZNq7xOxeamA7v20+vQYLYNXExoWHO8vCKd8hfu3Els\nhw4ueQ8aJJRSqp5cmtSFHTGbnNKsYyTaOqVFBkSSdCSpdjWJ9HT+dfdneBa703VCFsHB/ZzyGmPI\n2bmTqHbtqrzWqdIgoZRS9eCG6+6g6YFA3FuXr51W9mSTv3+FIOEfyYnEE1UGCYsFUlMhIgIIC+Pu\nHRn0+aMHq1t8R6MmqYSEOAeJgwcP4uHtjbsLOq1Bg4RSStULtya9SAtO4+rRT9rTCgoS8PQMw8PD\neaqMBr4NyEnNqXKMxIkTEBICnp5AaCiXZF3D3hbHeOeHl8nMXFUpSGzYsIHIdu3IKilxzftwyVWU\nUkrZDR83gYYpUST7unHYYXZvx+k4HHnkeeDu546vr2+lY/Ynm4BJLyym1b7G7Iz8idzcrXh6huPt\n3cgp/4YNG2jcvj1ZFotL3osGCaWUcqEDuw5wsH8PuvychVuXPpWCRMVOa4DC1ELcQqr+Oi7rj1i3\nai19DgxmTcf1vL/oHTIyVlaqRYA1SDTv2FFrEkopdS66/2/PkOfjR/OMGPy7BzsFiarGSABkJWdR\nElSCMabSsbIg8dUTqyh1M9yw9v8AyMhYWWWn9e+//07ryy7TmoRSSp1r1q5ax96r+tBz/iZ8Q31o\n1NG7VjWJpCNJSKiQW5xb+VgSmMS76bW5Kz/HfUcPSz7GYiEz86dKNYljx45hjKFpbCzZGiSUUurc\n8rf338XNlPLXHncS3DuY2FjsQcIYC3l5Oys9/grWJ5KCI4Pts8E6Sk6GLunx7Gh9mPeX/RMCA8k7\nvg539wB8fGKd8pbN/Brs6anNTUopdS5Z+MU37Ly6Ly2W/YLXAS+CegfZg4QxkJ9/AE/Phnh4BFY6\nNyEhgfBG4fbFhxzlbPwLzQ5Gsj9mvTUhNJSM5KXV9kd06dKFIHf386O5SURiReRHEdkmIltF5AFb\nepiILBWR3SKyRERCHM55TET2iMhOERlUn+VTSilXmb14Af452fzzqRlkrckiuHcwZYvCZWZW3x8B\n1iARExtjX3yozKP3P0HnxAGsabeOd776lzUxLIyM7NWV+iOgPEgEurufNzWJYuAhY0w7oCfwJxG5\nFJgGLDXGtAKW2fYRkbbAWKAtMBiYLSJa21FKndNefvY1tg7sT9yP62gc2ZiChAL8O/ojgr02UV1/\nRGlpKYcPH6Zpk6aVmpu2eXvRNMGTKW+Ms6eZsFAySn4nJCS+0rXsNQkPj/OjT8IYk2SM2WTbzgF2\nADHACGCOLdsc4Drb9khgrjGm2BiTAOwFutdnGZVS6nQtObiLyKREFnz2IdnrsgnsFoibp/Xr1TFI\nVDVGIjExkdDQUBqFNXJqbhp2+12EZnckqcFRmndsbk/Pb+aBW6k7vr5xTtc5fvw4OTk5NGvWzNrc\ndJ7UJOxEJA7oDKwDIo0xZZ9GMlA2O1Uj4IjDaUewBhWllDonPTz5ETYNvIqYVRsByFyTSVCvIPvx\nk9UkypYsjQwoX+v6+uHjWXfdMPovzGboc4Od8mdckkdIdvNK1ymrRYgIgR4eZFks9kdqn4x/s87v\nz6POZ54CEQkAvgAeNMZki4j9mDHGiEjlh4PLVTo2c+ZM+3Z8fDzx8fEuK6tSSp2KrV4FxB3Yy9ef\nfwRA1posYh4s/21rDRIWLr10N35+l1Y63x4k/CNZdWgVn344j73D+tBjyU+0yrmesKFhTvkzGp8g\nNKVlpes4rmnt7eaG2biR6cuWMfe77+m2pXWd31+9BwkR8cQaID4yxsy3JSeLSJQxJklEooGy3pqj\ngOMzXY1taU4cg4RSSp0tE2+6h41jrqHPh1/AX8BYDFnrs7i0Z3kwiI2FjRv34eUViYdHQKVrlAWJ\nCP8IknOSeW/7OrxiG/N4zGgCevjjGeppz2uMISP8MHHbK7fCb9iwgRtuuMG+H3L55fz+wYdcGj+N\n6/YWMa/gozq9x/p+ukmA94HtxphXHQ4tACbYticA8x3Sx4mIl4g0A1oC6+uzjEopVVeHo/1ovWMr\n87/6BIDcbbl4RXvh1cDLnic2FkpKqu6PAOfmpuAlzdjasxfNfvidsN2hhI90nsk1P38fuLnhe6S0\n0nUcaxIAPd5+nw1DBjHqo0ziX+xbKX9t1XefRB/gFqC/iGy0vQYDzwEDRWQ3cJVtH2PMdmAesB1Y\nDEwxVY1TV0qps+ym625jQ794ItbttKdlrskkuLfzDK+xseDtXfPjr3FxcTx91yx+u+FaLv/yGz77\n8kNOLDpBg5ENnPJmZq4kpLQjkp7hlJ6WlkZqaiotW1qboYaPm8Da64cz4P3vaV14CQ3HNqzz+6zX\n5iZjzGqqD0RXV3POLGBWvRVKKaVcIDcuiHabN/Dl1/+1p2WtySK4b+UgERKyDT+/IVVeJyEhAbG4\ncaDfZbT9/Vc+n/M2masz8YnzwSfWxylvRsZKQrwuhzTnBpaNGzfSqVMn3NzcGHnDLfxy6w30nPc1\nd3d9jIYx4BFQ9696HYOglFKn6J4e8Rxofxnue1Kc0jPXZBLcyzlI+PtDXNw2iourHyPx8qL55AYF\nkbZvGSl5KaTOT61UiwBbkAjpa1/nukxZU9N1I8azbvx19Ji/CB59iNKPUomeFH1a71WDhFJKnYL7\nx9/Nram72BvdiIwd5b/oi5KLKDlRgt+lfk75S0tLaNRoDykpbSpdKzExkcFDR/PboIG0WrASBpSS\nlJ1kDRLXOQeJ/PwESksL8W3QBdLTnY5t2LCBw7uT2TB+OJ2X/MCiD96jzQaDxc+NwG6VpwE5FRok\nlFLqFLRf9y3v9buakY0bs3fXLvtYhMxfMgnqGYS4iVP+goJ95OVFc+SIf6VrPfHwU2y+YRCXf72I\nrxb8lwj/CFJ+T0HcBf/2zvkzM63rR0hYWKWaRE5SIVvGDqT1unUsfvstADp8UUDauCAchxzUhQYJ\npZSqpXu692XY8USWXjmIG6Oj8fHxITnZOi4465csgnoHVTonN3cbubntnKYMB/jsP5/iFmKh4dEj\nLP73u4B1reuCxQU0uK5BpS/3jIwV1kn9fH3LZgwE4L7b7uPg2AE03r2bdyY/CEDxiWIarSrkyHXO\ntZq60CChlFK1cP/4u5m2aw1Pd+hL1iVxXBMWRsuWLdmzZw+AfVK/inJzt2GMc5A4sOsA2X//M0v7\nXU18SHmfQaR/JF7LvGroj+gHIhAWBunpTBw2Hl9LEqUlFmYNHkWz1s0ASP44mfSr/Ej3P/2HQzVI\nKKVULXRc9y2rwxowaP5n9AkKItDDwx4kSotKyd6YTWD3yu3/ubnb8PV1DhL/vW4wxDQix9uP5ydN\nsKc3zm6Mx3GPSjWSgoLDWCw55WtRhIVx2/gpTPl1Pv+5bgwPdOhGzyt7ANYBd8fePUbWzSEumS5c\ng4RSSp3E5O59GXw8kZXtBrDgxAlGNrD+0i8LEjkbc/C9xBePwMqPmublbSM8vDxI/OWyrtx8dB+z\nbpzIU927OTUrxa6PJaFrAm4ezl/N1qVK+9rz3hoSx5ObF/GPwddzSUwsd/frbc+btS4LU2Rw7+Pv\nkplgNUgopVQN/jT6LqbtXMNzrXvx1oKP+PbECYaHW0dClwWJqgbRAZSWFpOfv5eYmDYcPgyTL7+S\nR/Zu5PHu15LWuT23RkU55Q/5KYQ/OvxR6TplndYAt18xhL//8R0fx7Rm630P8Ewb53mZEt9NJPqu\naIJctDqdBgmllKpB5w2LWRnekH/9tpqfs7KI8/GhsY91kFtZkMhaU3WndX7+Xry8YmjSxI/+jQby\nzPafmd6+Lz0/eIOh4eGEe5bPy1ScVozbNjfWNltb6Tpl/RETew9i1qYlzI7rQNfp0/Fxc2NgaKg9\nX0lWCalfphJ5W6TLVqfTIKGUUtWY3O1KBqUks6qjdYKIBampjGhQ3qncsmVL9u7ZW21Nomx68LsG\nDeeZLcuZ1aobb6/9kXcTE5kU7TzI7cSiE/j38+dosfOcpoWFxyguPsFDA6by7OYfeL5lN567uj+z\nAgJ4vGlTp+aq458eJ6R/CN5R3k6r05WUZNX5M9AgoZRSVbj7utt5bPcvPN+qJ+99/RHGGL5OTWVE\nePmke4GBgcT5x2EptuDTzKfSNfLytvHyo278desS/h3bmpveWs+6rCwKSkuJDwlxyps6P5XoUdGc\nyD+BpbS8BpCRsZKPp7Zl1pYVPNOmN69tXMfyZs3IAq5r4PwUVOJ7ifYR1mWr02VlreO33zrX+XPQ\nIKGUUlXo+ccSljeI4F+/rQZgZ14ehcbQKcB5uu9+4f2wtLZUOWjt7RfWcNumH/gpNILvQxZx+DC8\nl5jInVFRTvkt+RbSf0gnYkQEQd5BnMg/YT/2t6H/5JkdP/NEh37863drWWY1b860rVtxc7hGzuYc\nipKKCBtkXX8i0E3oV/gftmwZQYsWL9b5c9AgoZRSFQy78iqGJCfzS8eB9rQFJ04wIjy8UjDo4NaB\nlMiUipdgwecLabd4E5mensTOmk23bs3Yc7SEL1JTub1Ch3X6snQCOgfg1cCLSH/rCnW/rFpL28ED\nmLl9HU90GMA7634EYF1WFnu9vRm/ebPTNRLfSyRqYhTiLhQWHuP4zuG0t6yha9dfadjw+jp/Fhok\nlFLKweVDRjMsZw1Lotrw6n+fsKdX7I8oE5sVyx6vPU5pf3/yWV5653GuSMlg3bA7GT5mOLGxsIzj\n9A8JIcrb2ym/41xNkQGRPPfAS/R7+2EeTtjIqshWvLt2qT3vswcP8qgxeKam2tMs+RaS5yYTfUc0\nqanf8NtvXQgLuZKpvIyXdyyn44wsX6qUUueDAdeMYWeb5dy8rJTExbHk5GzCz68Vx4uK2JabW6kf\nwZJrwT/Vn9+zf7enTb37Ed4oXMm3Ww+zqc9Ann3T2tQTGwsbJJFPouOcrmEshhMLT9D0iaYAeM5t\nyCctVtNrdxDjjhQTcKT8aaetOTmsy85mbnCw0yR/KV+kENjTm8NFfyX12HzatfuckJAr8DmyihyL\nhSAPnSpcKaVOy3VDx7O8zTqmLmtM8PDheDfvSU6OtUln0YkTDAwLw9vN+Ssz69csPFp7sHO/deGh\nm2+4k9dLl3Dl0SJ6F3ly3cIv7XkLGmeT61XEoDDnNauz1mbhFeWFbzNfOg++kaUdfiQ2oQ3L0t0I\neOVlcAhMzx06xNTGjfGtMMnfkfk/kz/1DgoLj9Kt2yZCQq4AIMjd/bQH1GmQUEpd9J58ZAYLY7YQ\nerANf3MzMGUKAQGX2YNEWX9ERVm/ZNGwX0P279/PiGHjmRuxBr+MhnyV5UPAs7PAq3wZ0+V+iXgv\nj8a9Qp9G6vxUsnpnEz18OJvar6Lb1nie7+SGb6kFJk6059ufn893aWnc26iRde6mtDRKS0rY8vFT\n5Nx2F7Gt76ddu//h6Vk+biLIw+O0B9RpkFBKXdR+WbWWF48uxyM3mJ8GXg+FhXDVVQQEdCInZxP5\nFgvL0tMZWlWQWJNFWN8wrrxyOAubryU0sSk7b5hMSEoyTCifkynPYmFR3nHyv4yiuLj8fGMMz696\nmWHpM0luvJdrtsRz75P9GPTOMnjtNXB3t+d94dAh7o2JsTYdBQdzvEEgq/97GRnF39LhkhXExN5T\nqVPdFQPqNEgopS5qw15+ihL/LB6JuYr2a36Ce+8FEXx84rBYslmSeojOAQFOo6PB+gWfuSaT8e/c\nz9J2a4g+2JYT878j5oN34YknnGoR/0tJoWdQEJHiw7Fj5dcYOuhm3uv0I7gZHrBcy3fff0afuT+z\n7ZIguPJKe75jhYXMS0nhwZgYivNy2fDhA2x/IYuGcjN9bltHeNvLqnxvjgPq6kqDhFLqotV82EjS\nm+xk+NH2/P2R+2DRInsNQEQICOjIV8kJVT7VlL87nycv/yfLOqwkbndXpg8ZBmvWwO7dcNttTnnf\nPXaMSdHRxMbC4cOwf9cBerR7iu+ij9IgLYLtT33Iq++8CAcP0vyTb3mhwlThrxw5woSoKArWLGXN\ngrYUWPbQ9alYLu01Bjf36r/GywbUnQ4NEkqpi1KXITdyoO0artrZg/nf/hf+/W+44QZwmAvJz78T\nizOLq+yPGHj/nazs8COtdvRmSvwV1nUlZs6sVIvYnpvL/oIChoWHExsLrz51J926b+O30HxCw3dx\n7NMfaG5bB4JHHyXnnjvY4pNpPz+tuJgFu3dx44+PszftDhoHPkPvu5YQ6O1TaRnTioK0JqGUUqeu\n/zVj2NhhBZdv6cey7+eBxQJvvWVtanKwz6M7AeTR0q98hbf9uw7Qqc3fWNP6V9rv7Mmub7+kZcuW\neKxbB3v2VKpFvJeYyO1RUXi6uZG69698+ePf8GuyDp+rZ/P7jF/wcLM9nrpyJaxdi/djT5Kck4wx\nBovFwtdz/8mbebfjKe70jN9Bi2G2vo7Q0ErLmFYU5OFx2n0SOk5CKXVRGdbnXlZ03EaL7b1Z/93n\n1sTvvoOICOjWzSnviqLmXOG2GLgOgCnjp/L5d1dyoushokstbFm4ELBO9Ndw0yZrZ7NDLaKwtJSP\nkpMZ8fo8Gi+/nKQTkxnQfRaJt61gVp/ZNAu11SAsFnjwQXjxRfyCG+Dp7snK5QspSJhBY+9sGgS/\nS8cbRjq/kSrWuq7onO+TEJF/i0iyiGxxSAsTkaUisltElohIiMOxx0Rkj4jsFJFB9Vk2pdTFZ9Dl\nf+bb/NYEeWSxIOy58gOzZ1eqRQB8n+1Jj5JvKS0tYsQV9/De/+6mtOFevHv/l9+e+9me75LkZGLy\n8igZP97p/K9SUuj28DzmfH4/llIPxlzzD/Z3dad9RHtu7Xhrecb334egIBg9mr07t/OObxdKs+6g\nyG0U8WN30vHqCgEC7EuY1sQVNYn6bm76DzC4Qto0YKkxphWwzLaPiLQFxgJtbefMFhFtDlNKuUTf\ny55k6R/34X3NkywY+zFZq23TZx84AOvWwdixTvkT8vNJLCqms08h8V1m8s2av3NZy/8Re/+nvDri\nFRoFNrLn9X7uOd4MC+NQUpI97Yk/TeOpyz/l+18fo0+H90lMHUePPw3nSMB83hz2ZvnjqunpMGMG\n6bNm8dVb93B4dy+yS4IoafEJI+54Cs8KT1XZ1aa56VwfTGeMWQVUDHUjgDm27TmU1eNgJDDXGFNs\njEkA9gLd67N8SqmLQ5fWs1i95V5ajh3N9d1G0LdPX0qySig8Wghvv23tR3DodwBYeOIE8d+t4ubr\nH2TNlkkM6fk0t/0njED/QO7qcld5xp9/hj17+KNTJ3bv3s3+Xfu59Zor+OcHHhxJ6c8N/R9n5cZn\nSclN4bntd+L7/RxCfR0WCnr6aRZOGsrG5FG4m4NEt1jN4lgPsj1ya35TtWhucsVgurPRJxFpjEm2\nbScDkbbtRoDjkkxHgJgzWTCl1IVl/64DDB64iP3HbmTQgEf4tf0Bnh3wBSJCcJ9gMn88TsR//gOr\nVlU6d/ltT7LklzvxcC/gxgEzeOF//0eXt7uweuJq3BwbOWxPNDXbsIH/vvo62w6vJuHYCEzpfezZ\nF0WjRv/GGMNdC+/i1stu4bUn4ykoAE+PEpa/9Tym0zd4Gh+8gv/NiBuGAxCxP4LjucdrfnNhYbB1\na41ZXDGY7qx2XBtjjIiYmrJUlThz5kz7dnx8PPHx8a4tmFLqvPfZB/N46JFi0rJ6cmP88/jf50sn\n/0k0DbFOpBd8ZTClH86Djh2hVSunc0f1HcOC1S/TqsmXvPzPIqJijzJl0RQe7PEgbRq0Kc+4ejXs\n3ctDazZyePf3/PTHATq3uJWi4jf5Zb0fjWwtUu/8/g5Hso7wv9H/Y15UCd+9/iy+4Z/gFlJASfqt\nXDNlJu4Oo6sjAyJJzk2mRidpblqxYgVfLF7MHxkZzKywCt4pMcbU6wuIA7Y47O8Eomzb0cBO2/Y0\nYJpDvu+AHlVczyilVE3+PPGvJiRwkQn0/8Hce9ODZlPiJhP5YqTJyM+w58n4JcNk+V9mzJdf2tNu\nGTzK9GjfxHh4bDHdL33VGGNMQcExM/PzANPuX+1MYUmh0332dexobhnU0zQMdzN9Ozc0w/rcayIi\njFm6tDzPzpSdpsELDczWxC3mu9dmmu/eb2WWfBhnFr00zRQXOl+vzBvr3jCTF06u+U2uXGnMFVfU\nmOX3rCzT+ddfjTHG2L47T/k7/GzUJBYAE4Dnbf+d75D+XxF5GWszU0tg/Vkon1LqPHbToNv4etU9\nBPom8thDe3nwyVcY9PEgpvedTrBP+TrUgZ4HKM47RknfIRzatZ8n7hvNt+s24ee5mPatclm79UEA\ncixevL47jy/HzsLLvfzx1juvvZbfC/eTtaOIId3iuWfG2/Tr58Xbb8PV1iWxKbIUMf7zm3ihcBRH\nvxuFW0gpu9aPI6DLU9z+sBfVifCP4HheLZqbzsBgunoNEiIyF+gHNBCRw8AM4DlgnojcCSQAYwCM\nMdtFZB6wHSgBptiin1JK1cpt1/TjyxUPEBV2lLmfNaF3vxv5ds+3HM48zN1d73bK6/be26Q1uYG/\njr+RTQkrKCgqIS5iDoFRg1i+HMoePnp06aMMjImhXbC1OejhMTcR03gb83/eSv9O7Rlz+xNcO3os\n/fuXYszz3HrrXwBPCvJymfPCvTzbLBNil2NJv4mBU6azbLsXgYk1v4/IgEiSc06vuQnOg8F0xpib\nqjl0dTX5ZwGz6q9ESqkL0ZP3TeO33z5h9ZbrCfBtj/f/MvHudCklpSX8ZclfeHHgi3i6OzxKmpXF\nO8vW8H1cMT/8spNrurWjRdf/8Mln3VjyRfl4uOUHlrN0/1IWDhnFM5M/Jr7HszTptJkZ/1fEgN5D\n+XzpN1gsMHo0tGrlRkrKe/y8rD1H139MVJufiIsNpiBtHMPufxp328I/sbGwZUsVb8JBpH8t+iTO\n0GA6HXGtlDqvTRgymBV/LCPU/yosJc/w65ZgZpfuZWFqKr/u+p6ogCiubXWt0zl3jBvDTwU7CTnu\nzfTRZfYAACAASURBVIje1/LICwsYMMA68DrS9rxlfnE+93xzD9et6cPe4k2MvGUzC+e25u35JSz4\nZhFX29qUHn3U+l09eey/ubZNHKb4ZvwDOpKVdh+jJj9Rsbj/3955x0dVZo3/e6YkmUwqgYRAAqGE\nHiCAUgSlWOhWliKCyOqquwrK2tBdcS3oz7IvqPuuDcUXbIhiQ2wIYoGgUgVDgACGkgbpdWae3x93\nAiHMnYyymsF9vp/PfG55zn3umTPJc+59yjkkJ8PKlf6/U7wzgNlNDofxulNZaez7IMxiwQ3UeDz+\n6/KDdhIajeaMZP269Tz295l89v1Ozk8fwTdZ7/PKa3bat4dxRc2ZvXMzR76+j5VTVh5fuDZ74hSa\nx21mxVc/Mursfsx7aAk/Di3g4vGKhQuFvn1P1D9n4jXM759Es6tWciBjCP+en8rW7H189vlqBg4c\nCMDCBbWEH53LXyesxha6l9raAWzceC23/+NxU73rIsH6IyYshsraSqpcVYTZwswF67qcWvteLSAi\np72gTjsJjUZzxjFt5Hg2Z6/G41GMGTiOYvs7/GEiXHqpUT4oKoofdy1iXMr5pCemc+Nlkxne/zAJ\nnb5l/hO1jDt/AkvfeZ3aWphiacklQ6qZPNlojK8bfgvnditmwtUf8NO3Q/hs8aWkXzSQzXuu5+OP\n15Oe3p+MNV+z7ZMn6drta7oMs5K3bwhnX/IW2w+8w/7MTL+6B+IkRIR4Zzy5ZbnHp+z6pK7LycRJ\nwOkvqNNOQqPRnDFkZ+5l3qypvPfNeob17sw1sx5l556xvPUWLF9+Qu5I6UE8h94lOmM0r+64kAlX\nr+ft/0vl+ffcrF6zlgEDBgBwyy0QEWclyfU0tw6tJC2/C5dd+T01KXt5760xPPHSq+Q99hgPPTSf\nJxd0Y8PyxexfcwvRqVtp1qw3OfumcNXt/8DmDZ2RmprK+++/7/c7xMUZye/KyiAiwlwuISKBvPK8\nwJyEH053QZ12EhqN5ozg7mmTKfZ8zocbCxg/6AIWf/gRX34Jj90AGzeeFHyVuVfP4bkeg0me8T65\nW/vzwP092JGTzVfffE16ejoAzz0Heduv5bzWvUn5pDct0nbQ7B9/QoX0YczoLMZNDuWee+5hz3eb\neHBGd+JDNxDb/jNy9pxF2/4LGDbnrFN0TE1NZdeuXX6/hwgkJRlvE127mssFPHjdyDTY0x281k5C\no9EENTdfMZkRg7Mpsm7ntXcUj068kWv2Z5KfD5MnG7mC2rQxZKdfdC0DUxQzpn/CsV09WbZ4DN0v\nHErm4fv57LPP6NatGwAzLriR7kfPYVrmFHZ1OsyuafM59/ItdOy4kISEK1n38Ro2r/pfzum6neH9\nDpG7bSDZu69kyKW1XHTNv0x1TUlJ4ciRI1RVVREWZj6WUNfl5M9J1HU3+SXAabB6TEKj0fzuuP6y\nqQzrk8sl0zL41z9bs3pTCJu2bqJtfDyeVklMvaKSqVMdjBkD1w6fRY/SfkwdfgR3v418sOx8Hl+6\njDtuu403H3iArz7/nLvn3EdFYhxpPw3l0g1XsKlHJiuGfsycR4W87/dSuONhtrz9AW3aPYGz3Y+0\naZvGvuxhTLr0PmIviePYsTVkZ586W6k+NpuNtm3bsnfv3uMOyReBjEskOBMCi98USHeTfpPQaDS/\nF+67+W6SnNv4w9Vrydt2FnfemUKxu4ptP2yjtXeA9qHURdQcXkzVN3m80LEvo529sd91JzlHHVx1\naRYjJ0Qyf/58Yj75ik4jLuLK91YQ3etK/vykcCjmIC1eTuSvFwzj9ZdeZfUL8bRtF0Nkyixal/cg\ne293BqX/m2GzTu5OiojoRXn5NpTy4C+LQWpqKllZWafvJCISOFB8wL/Qb5BTQjsJjUYTFMyaOpuU\n8GIGX/ABZQfbs2LxKGK6d6JclrN27VpatmwJwPRR19HW3pM/H+1KsSeZotGLaHfxJ3Tp+jiJiX8k\nOzOb2X+7kZJubcm+7w6ith7k2gVRJBS5GPLWYD7c/Qqbvnqco4d20y4li5LaNPZk9qDdF/dy8es+\nkvt4sdtjsdliqazcS3h4R1O5Oifhj+RkI4WFP+Kd8Ww8tNG/UGws5OT4FdFjEhqN5oxm+og/0b0q\nnTFDdkO/jaz+YBh3P/MiXx++j3feeYc1a9bw7IIX2bAviy7HBnP515PZ0z6PT/suZ/bcfRSH7SXz\n+7/z6l1LCElcwTejxlB42Ui6rP+WW+/8kZSjHTlw8Yc4Wh1k48GbaZl4FEdZGnt292DoWYsYNiad\n8p3lbBvTyDJo6t4mtjTqJLZs2eK3nuRkePNN//f6j3U36TEJjUZzppGduZdHb3iO7nlnM8HWB8vc\neRw4EsHVl2TxVO1UxkwbQ/7mQtr36s0VTy0kTA3gjx/3othRwEf9V/D/3r6O22cu4KlbFWcdLcbe\nZjnfXDudfGcUXb7YyI3NWlOpDpJ83QaiU7fRPD+R3OxUftg+hmvuup/o8bEn6RPeJfx4EqLQ1qGm\nekdE9KasbAstWlxuKpOamsqbjXiAQLubGh24DjDI34Hqav/1+EE7CY1G85tx+7V3YMlsTtreXpwj\n51F65VPYh66md/rzjE6YgsfjwfJGJJZOnSm6rB/Fu2uY/kwIMUdrOG/ZAGY+fgNt87L5qOsSHsw7\nyr9GDGPuzQ/T+ce9XL11HUkJeTQbtBt7swKKs9LIyUlmf9RVLO19Nhkz+prqJSJED46m+Mti4ifG\nm8pFRPTiyJHFpuUQeHfTTz+BUicCCTYk3hl/2jklwDsmUd5Iljs/aCeh0Wh+Vf694FlWfbWBbkWD\nOGfDReQkF/Ntn3eYeOdWQsI8rP90Hm/e+wzulLfYNGwYuVMuJv2rzcyZm8/3zTexoFsRoa5D7L9j\nBs9llfB9TBSvDhrFrgRon1jIi3If9sF5lGd3JjcnmYObxjLt9rtpMdYYw6j1eJj39dccrq4mMdT8\nLSEQJ+F09qKsrLGupGQKCgqoqKggvEFK1OP3igaLBYqKjHbeF83Dm3Os8hgujwubxaSp1ovpNBrN\nmchrL7/BklUfUNEhhZb5/bn6k3Ycicvlnd5vkjBoJPkb9rP8+nJ6VeVRnJ7Byluvx15WTpulqwgL\nETJCy1kz+D0uP7qLR9bb2TxgBLahrVkz6SjRrbOZ3vzdE05hVT8mP/Q4rcYk+9TFbrFwUWwsK48e\nZaafDG3Rg6PJWur/DcDhaI/LdYza2mPY7b5bd6vVSrt27dizZw9paWmmddW9TZg5CZvFRjNHMwoq\nCmgZ0dK3kF5Mp9FozhTeffN9nlu+jNJOyexM68Oo8JFcvDCSktBC1l68lZ/2bKNv7h6Gv/ASESFO\n7pk0hR+3lFC2NxYWfsHBhAPs75fBuH1pjItuQVJiG+LOthF6XRb9yjZSmtOe3Nx49hwZzVWz76D1\n6DZQU2MsX76/xq9uY+PieDM/36+TiOwTSUVWBa5iF7Zo302jiAWnM42ysi3Exg41rauuyykQJ9Gz\np7neddFgTZ1EdDSUloLbDfXSn9ZHD1xrNJomITszm3nX/JlwexX56d34+pzziD5/CMNX5NPik+Vs\niarmuwF5jD6WxbRVeWyrjmJ5jwmssCSxv6gVue8XMKFHLgM7VDC9eQXNWhTgTLRhOS+DigMdKTzc\nmk3bOpMaNpuJ10z3rURICFx5Jbz0Etx/v6muo+Li+HNWFlVuN2EmjaklxELUWVEUf1NM3Mg407rq\nZjgF4iT80abNzxi8TjARsFggKsrot4rzrbNeTKfRaH4zpg2/lOZHc+hamUtFpy7s/sMovg6JZNTr\na4nd+QY5ziKWx+7j3PII0ojnWFks7xdcxcfRUZzXey9D44tIaLGfmPgjOFplo1x2Kg6ncCwvgd27\n20POeUz/623EjWmBUor0Z9J5YPBU/0rNmAFjx8K8eaZP03F2O70iIvi8qIhRJo0pnBiX8O8kelNS\nst6vSqmpqWRk+M++HOiq64DjN5k5Cb2YTqPR/Bq8+tJrvPDKmyQUH+KsohyGF+RydkQinyRfyHoV\nx75DtRx+6SNmJkcikceIqsyjc0ELOjn60SqtluZxpUQ1y8ERn4El+ii1ua2pKEikML85BzankbH0\nGha+OoukJN/3FxHmDpnLg+seZEzqmOM5IU6hZ09o0QJWr4YLLjD9PmPj4nivsLBRJ7F//n6/domI\n6MWhQ//2K9OpUyeWLl3qVyY52VDZHwElH2pkhpMek9BoNKfN3sxs/nTTXRywVWNTBXTZs4HQNhcQ\nWRNLdvlgdltL2Tu0iBaxLtoW5dI1pZjLohVxMXaiovMIjykgtPkRxJFFzeFkygpbUnQ0lp9+6ITs\nG8rVt/6V+ItOHg+491649VZ44w1zvS7vejl/+/xvrNm3hmHthpkLzpgBL77o10mMi4vjoq1beVop\nU4cTNTCK0m9L8VR7sIT6Dr3hdPagouJHPJ5aLBa7T5mfMw3WHwnOANdKNOIk9JiERqMJiL2Z2fz1\nTw+QXxNKTkgl8bYjdAux43YXE1vdnBQSCQmLJLxvErGRitioCqIit+KMLMERXUhIi8Ngc1Gb14rK\nYy0oLYrl0OEWHMtqQ3iL9sycM4uYZrFMnjyZ6OhonnnmGVNd7rwTuneHjz+GCy/0LWO1WLnznDt5\ncN2D/p3ElClwzz1G33xMjE+RLuHh2EXYWl5OL5NEDrYoG+Gdwin9vpTogdG+dbI6CQ1NpqIik4iI\nHj5lWrVqRUlJCaWlpURGRvqUCXRBXWah/yRGjc1wslkshFksVPivxfz6X3idRqMJUvZm7uXvs++g\ntCyS4vwyOqZaKVYuKqtqiXeE0z4R+kSUE+10ERlhI9xZjiOigtDoTdib5YHVjaswnuqi5lSUxFBa\n6iQ3P4niyg7EpfSg37BVtGyXTJcuL5kGunvuuefo168fS5YsYepU32MKDgcsXAg33QRbt4LZEoap\nPacyb+08NuRsoH9Sf99CzZoZnua11+D6632KiAjj4uJ4r6DA1EnAiXEJMycBxrhEefkWUydhsVjo\n0KEDu3fvPp6/oiFJSUbYpcYW1J1udxMY4xLaSWg0/yXce9NcNq5fgzOyFZXVZbSIiiIqwkJ0hBAV\n7sbpcHHhWdU4HIWEhpcR4izFHlWEJaYQqsNwFTWjpjSWytJoKsqdFBTEULK/BSVVXYkoSmFwzvmc\n8+EAQlqE+Ly/230TW7eOJCvrL6SmPu2z6yYyMpJly5YxYsQI+vTpYxoRdexYePZZePxxmDvX9/e1\nW+3cPuh2HvryId6Z9I65YWbMMAavTZwEGOMS92Rnc09KiqlM9OBocpfmwm3mt4qI6EVZ2WYSEq40\nlanrcjJzEuHhRma6/HyIN1m/F/DAdQAL6o74r8WUoHMSIjIS+B/ACjyvlHqkiVXSaH51LjxvOK2c\ncUQ5bYSHCmGhHpyhCkeoi7BQFw5HNaFhVYQ4KhjYs4whA0uxOHcgEaVQ6cBdEkttWTQ15ZFUVTqp\nrAgjLz+WssoWlFUIZTU27MNG8GL3TjzUtx1/TEz02bgrj2Lfvfv4vv/3pL2fhrOb8xQZqzWctLT3\n2bJlBHv33kn79g/7rKtnz5488sgjTJgwgYyMDJzOU+sCWLAA+vUzZrK2NcnUeU36NTyw7gG25W4j\nLcFk7cGFF8If/wg7doCJUzo3JobMykpya2pICPHtBKMHR7Prhl0oj0Isvh/xIyJ6kZOzwLceXn7O\nuISpkwg0flMAkWB/KUHlJETECjwFnA8cBDaKyLtKqZ1Nq9nPZ82aNQwdOrSp1WgUrecvZ+2na3h7\n8WtUlRURFmIhzAqHjh6hc5t4Qu0eQkM8hNrdhITUEhJSiz2kBntINbbQamwhlVjDKrGElWNxlnPX\n36ugwomnwom7MgJXVTi1leHU1oRRXRVKZWUoR49FUF5lo7xKKK0UKmotXH71VC4aPxIyM41O/k2b\n4KGHYNIkYw59A6aXl3PpkiWsGDiQ5zp3plWDPh6xCO3ub4ejk4PNQzfTdUlXml3Y7JR6bLYoevZc\nxaZN52GzRdG2re9kPDNmzOCLL77ghhtuYPHixT6dSbt2MHu28Xn77RPn6//mDruDWwbcwvwv5/PK\n5a/4/kGsVpg2zRjAfvRRnyIhFgsXxMaysrCQGSYL60JbhWKLsVHxY4VPJwl1gf42o5Ri7dq1Pv82\nU1NTWbdunW9dvdQ5ib4mYaXqupuUn8F2YmON/jo/RNl+eVMfVE4COBvYrZTaByAirwEXA9pJ/Eqc\nyXrmH8nnmy++ZmvGtxz6KYfa6ipsFrBZwG4TQmxGu2G3KGw2hc0KNqsHm1Vhs3qw2zxYrR7sdjc2\nqxurzY3V6sJqc2G11WKx1WK112Cx12CxV2MJqcESUo2EVEFoNVg8XDzRgafagaoOw13t4OXlRfTq\n2QZXTQiu2hBqa4xPebmD6mMRVNVYqa6xUFkjVNRAVZWitNLDli0OojsuZvp0mDDBWEhbnx/yfuCf\n6//J8p3LmdR9ErcMvIVOcZ1OCHTubLSw69bBnDnwxBPw2GPQwGbdnU4mHjqEJTKS9G+/ZUHHjkxK\nOHWlVsurWhKWEsaOP+yg7d/b0vqG1qfI2O1x9Or1CZs3n4vVGkFS0qxTZESEp59+mv79+7No0SJm\nzpzp8/e97TZIS4OVK2H0aN+/+Q39bqD9wvbsPrqbjs1MQnXPmAHnnWc4SrvvmUdj4+JYUVBg6iTg\nxLiEmZMICWmFUh5qao6Y/g+lpqayaNEi03tA44PXYbYwHHYHRVVFxDpM4ncE2N30Swk2J9EaqG+y\nHOCUkaoJ/c3D9Eroqd62Wk4esgmxnXh6kuoTT1vKUes9aRjUriwIFjy13vOhVmzHB+rq7mN4+Don\nbwEQYdOu7Rz4bgcWZRQYl1lAFFaxgHgQJSAg4n1KUB6sFgsebz0ieMtBlHGy7rwcr06wSJ2sQgQs\nIogovKoYOlmUIQdYvPVaRPHldz/wSO5O73V1uhj1WL1bEYXF4t3WKzfOq5O3ohCL5/ixWDxYxINY\nFCIeb5nHu+/GYjW2YvEg4kasbuPY6kasruPb7B0lrF6xALG5wOoCmwuxu4iMtXHOCBu47CiXzfi4\n6/ZD8LhseNx279Z2fOt2W3G7bLhdNlxuK1XVIbgqLLhcFmpdFlxuCzW1YnxcUOOCqlqorYWqGjfV\nNR6Ky4soKq6gc9dKZt6yB4ejBXGb4hgwaS7R0UOw22Nwu91kZGTw7rvv8u7H71JYWMjYsWMZf/l4\nzj///OMB4Gpq4MMP4eWXjTZ+1CiYPt2Y0WmzQff47jw//nkeGP4AT2c8zeBFgxmUPIg5A+cwuM3g\nE0+ZQ4bA+vXGvNIZM4yW95FHTkqmbBVhXrt2jI2LY9qPP/J2QQFPp6bSvEH3S8yQGNK/TGfb2G1U\nZFbQ8fGOiPXk/6/Q0ER69fqUTZvOxWqNJDHxmlP+/5xOJ8uWLePcc8+lX79+9OrV6xSZsDB48kn4\ny19g+HDjuCGRoZHc2O9GHv7yYZ4f//ypAgCdOkH79rBqFYwb51NkdLNm3JSVRbXHQ6iPty3wOol1\nxbS6rpXPchHxjkuYB/v7j06DLc89PSdxGm8SopT6xRf/pxGRy4GRSqlrvcdTgf5KqZvqyajVnzTi\nFZWP1zJf53yVHd/3bpWP86p+mZwoV3WnhcWvVDN9clg92brrDDlVV4+qX6e3rN5+XZmqu75uv941\nymMxZJWglMXYUk/+uMyJeuq2r6w8xORRSSiPxSsnx+tRXjlV/9hTt4/32IKnnpzHY3yO79fbKg+4\nPPXOuwW3Ung8gtsjuD3g8YDLo3C7BbcCjwtcStiwfRu9U3tQ43HjqlVU1SqOlh4lNDKM2ko3UQ4b\n4oKSiCryVREFRTkMDositaSKTqVVpJYYnxCPIisqjNwwG+WOcA60bsO+5DbsT27LvuS27E9qi8Xj\noc3BA4RVVQEQVWwn+YCT5J+cJB9wkvSTk4pwF/nxVXjq2hhrLY42e1hZ+ArTp1lwtMukJq8VruKT\nu2oO51eRsb2YjO1F7D5QTmpbJ6H2kxsqlyuWoyWXUVA0iZraZMLDNp/6J2uroqb7p9T0XQG1oVjK\nmp8iE+L2cGNmLrdvP8zmZuFUexvEV0oqmRLlAKDaHsKSCVP4YuAQOmTvOaUOgLBKK1MXd8BZYaM4\nutanTEj8QdrO+jtVB1M4YZSTWfttIS++k0OHJN+RUQF2H3iZGlcrbNYCqqqXEBZ68swoT1gJZTNn\nYj1knhr0mqw87th+mB3RDlOZ2//2EBaPh/BK33N+WuSG8ZeFXcluX2ZaR8JlL+LssoXFS2qYMvrU\nNy2lFJNu30T3jpGYtT6FRVfwU+48wsO2m96nbOJtxkNlte8ZWV2LKvly1Q98ER9lWse/p13LB/Mf\nRSl/DaFvgs1JDADmKaVGeo/vAjz1B6+l7hFZo9FoND+L34OTsAGZwAjgEJABTD4TB641Go3m90BQ\njUkopVwi8hfgI4wpsC9oB6HRaDRNR1C9SWg0Go0muPA9whQEiMhIEflRRLJE5A4TmYXe8i0i4ntZ\n469MY3qKyFARKRaRTd7PPU2g4yIRyRWRbX5kgsGWfvUMElsmi8jnIvKDiGwXkZtN5JrUnoHoGST2\nDBORDSKyWUR2iMh8E7mmtmejegaDPevpYvXq8J5JeeD2VEoF3Qejq2k3kALYgc1A1wYyo4GV3v3+\nwPog1XMo8G4T23MIkA5sMylvclsGqGcw2LIl0Nu7H4ExhhaMf5uB6Nnk9vTqEe7d2oD1wOBgs2eA\negaFPb263Aos9aXPz7VnsL5JHF9Up5SqBeoW1dVnPLAYQCm1AYgREbP8Tb8WgegJmM6A+01QSq0D\n/CXCDQZbBqInNL0tjyilNnv3yzAWejacTN/k9gxQT2hiewIopermoYZgPHg1nPTf5Pb03rsxPSEI\n7CkiSRiO4Hl86/Oz7BmsTsLXorqGE5F9yZikL/nVCERPBQzyvtatFBHzCd5NRzDYMhCCypYikoLx\n5rOhQVFQ2dOPnkFhTxGxiMhmIBf4XCm1o4FIUNgzAD2Dwp7APzHCE3pMyn+WPYPVSQQ6mt7QS/7W\no/CB3O97IFkp1Qt4Eljx66r0i2lqWwZC0NhSRCKAN4FZ3if1U0QaHDeJPRvRMyjsqZTyKKV6YzRU\n54rIUB9iTW7PAPRscnuKyFggTym1Cf9vNQHbM1idxEEgud5xMoa38yeT5D33W9Konkqp0rrXVKXU\nh4BdRE6NmNa0BIMtGyVYbCkidmA5sEQp5ashCAp7NqZnsNiznj7FwAdAvwZFQWHPOsz0DBJ7DgLG\ni0g28CowXERebiDzs+wZrE7iWyBVRFJEJASYCLzbQOZdYBocX6ldpJRqJKbuf5xG9RSRBBEjsI6I\nnI0x7dh/oJXfnmCwZaMEgy29938B2KGU+h8TsSa3ZyB6Bok9m4tIjHffAVwAbGogFgz2bFTPYLCn\nUmquUipZKdUOmASsVkpNayD2s+wZVIvp6lAmi+pE5E/e8meUUitFZLSI7AbKgRnBqCdwBXCDiLiA\nCowf7jdFRF4FzgOai8hPwL0Ys7GCxpaB6EkQ2BI4B5gKbBWRukZiLtCmTs8gsWejehIc9kwEFouR\n4s4C/J9S6rNg+18PRE+Cw54NMSLAnYY99WI6jUaj0ZgSrN1NGo1GowkCtJPQaDQajSnaSWg0Go3G\nFO0kNBqNRmOKdhIajUajMUU7CY1Go9GYop2EJigQEXe9EMubRKStN/Tye97ycWISMr5eHcflfZTN\n9i6C8lW2RkT2Nzi3QkRKf+F3eUmMfO2/GSIyVkTmeffniYhHRDrUK5/tPdfHe9xXRLaJES56QT25\nm0Xkqt9Sd01wo52EJlioUEql1/uc1Ggrpd5T9XKd/wJmAeF+yo+JyDkA3pW1ifzy+EBNsfhoDvC/\n9Y63cfJirgnA9nrH/wvMVEqlYkQNGOk9/yJw06+pqObMQjsJzRmBiFwtIk969zuIyHoR2SoiDzR4\n4o8QkWUislNElnjlb8YIk/25iHzmo3oFvM6JRvUyjJhHdSEWIkTkUxH5znvP8fX0miZG1M/NIrK4\nXp3nishXIrLH11uFN5TLThF5VoykQB+JSJi3rLf3+20RkbfqwkH4sU0yEFIvtILCCC53cZ29gCKg\n0HucCEQqpTK88i8Dl4ARfwgoFJHu/u6p+e9BOwlNsOCo19W0vBHZBcA/lVI9OTnkMRghsWcB3YD2\nIjJIKbUQOAQMVUqNMKnzM4yG3YIRg+v1emWVwKVKqb7AcOBxAG9DejcwzBsddJZXXoCWSqlzgLHA\nwyb37Ag8pZTqgdGI1zmTl4HbvNFEt2GEJ/HHORgRSOtTAhzw6lj/+whGqOj6gSgPcnKI+wzg3Ebu\nqfkvQTsJTbBQWa+rqbH+/AHAMu/+qw3KMpRSh5QRb2YzRtbAQHADXwKTgbAG3V0WYL6IbAE+AVqJ\nkaRlOPBGXRA3pVSRV77uSR6l1E7ALKFLtlJqq3f/OyBFRKKAaG8CJjCSwzTWYLcBDvs4/7r3+1wC\nvF1Pt8a6ww4RuN00v3O0k9D83qiut+8m8CCWCiOz4ALgjQZlVwLNgT5KqXQgDwjzXmMWs7+m3r6Z\nTENdrT5kAs105is/wPsYQf72e7uR6jjEyUlmGoaKFoIzn4imCdBOQnMmsh4j4iYEHmmzFIjyJ+B9\nen+IU99OojASubhFZBjQFqMRXQ1MEG/OABGJDVAXM0QpVYIxiD7Ye+4qYE0j1+3HyGndsK5K4A7g\nwfoFSqnDQImI9PeGtr6KkxPkJAL7ftE30Pzu0E5CEyz4enKt3zVSf382cKsYqSQ7AMWN1APwLLDK\nZOD6xMVKPVEvB0BdXUuBfiKyFaNB3emV3YHRAK/16vK4iR5mOjU8X3c8HXjU273VE/gHgIjcJyLj\nfNTzFdDHV11Kqdfrcl034EaMHMhZGHnaV9UrOxtY5+MazX8hOlS45oxDRBzep2REZBIwUSl1L4AF\ngQAAAHhJREFUaROr1aSIyGrgSu9bwunUEwV8ppQ66z+jmeZMR79JaM5E+nqnnG4BrsdYI/DfzmMY\ntjhdrsYYl9FoAP0modFoNBo/6DcJjUaj0ZiinYRGo9FoTNFOQqPRaDSmaCeh0Wg0GlO0k9BoNBqN\nKdpJaDQajcaU/w+u/OpMnewwtQAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5d36550>"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex13-pg296"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "print \"Example 5.13\"\n",
      "#plot the graphs\n",
      "%matplotlib inline\n",
      "import numpy\n",
      "from numpy import linspace\n",
      "import matplotlib\n",
      "from matplotlib import pyplot\n",
      "#T=Th/Tc\n",
      "z0=numpy.linspace(0,8,160)\n",
      "i=0\n",
      "z1=numpy.linspace(1,4.5,7)\n",
      "for T in z1:\n",
      "\tg1=numpy.zeros(160);\n",
      "\tgc1=0;\n",
      "\tfor alfa in z0:\n",
      "\t\tFR=((1+alfa)**(1./2)*(T+alfa)**(1./2))/(T**(1./2)+alfa)\n",
      "\t\tg1[gc1]=FR\n",
      "\t\tgc1=gc1+1;\n",
      "\tnumber=0;\n",
      "\tpyplot.plot(z0,g1)\n",
      "\ti=i+1;\n",
      "\tpyplot.xlabel(\"Bypass ratio(alfa)\")\n",
      "\tpyplot.ylabel(\"Ratio of mixed to seperate-flow turbofan engines gross thrust\")\n",
      "\tpyplot.legend(\"T(hot)/T(cold)=1.5\",\"T(hot)/T(cold)=2\",\"T(hot)/T(cold)=2.5 so on\")\n",
      "\tpyplot.title(\"Ideal gross thrust gain with a perfect mixer\")\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Example 5.13\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAFBCAYAAACcr2PXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4XNW1t9+tkUZTNCq25Sa5995kuWBjgbGNHUhIyA3h\nEggkQBotl8C93A+Cw01y0wvhEhJKqCEFEhIIBoMbrpLcuyz3Llm21WY0M5qZ9f1xjsYjW2UsjTSS\nvN/nOc+cus86M2fO76y99l5biQgajUaj0USSEG8DNBqNRtPx0OKg0Wg0mkvQ4qDRaDSaS9DioNFo\nNJpL0OKg0Wg0mkvQ4qDRaDSaS9DioNFoNJpLaFYclFIPRrNOo9FoNF2HaDyHOxtYd1eM7dBoNBpN\nByKxsQ1KqVuBfwcGKaXejdjkAs62tWEajUajiR+NigOwDjgFZAI/A5S5vhLY3sZ2aTQajSaOqOZy\nKymlUoAaEQkqpUYAI4AlIlLbHgZqNBqNpv2JRhw2AbOBDGAtUAj4ReS2tjdPo9FoNPEgmoB0goh4\ngM8Bz4rIvwFj29YsjUaj0cSTqPo5KKVmALcB/7qc4zQajUbTOYnmIf8Q8BjwdxHZpZQaAqxoW7M0\nGo1GE0+ajTloNBqN5sqjqaasACilGvISRESubQN7NBqNRtMBaFYcgEci5m3AzUCgbczRaDQaTUeg\nRdVKSqlCEZnaBvZoNBqNpgMQTbVSt4jFBCAHSG0zizQajUYTd6KpVtoM1LkXAeAw8NW2Mkij0Wg0\n8afJaiWlVAIwQ0TWtp9JGo1Go4k30aTP2CoiE9vJHo1Go9F0AKLpBPexUurzSinV/K4ajUaj6QpE\n4zlUAw4gCHjN1SIiOiit0Wg0XRTdQ1qj0Wg0lxBNayWUUlnAgMj9ReSTtjJKo9FoNPElmn4OPwZu\nAXZjVC3VocVBo9FouijRxBz2AeNExNc+Jmk0Go0m3kTTWukAYG1rQzQajUbTcWi0Wkkp9Rtz1gNs\nVUotA+q8BxGRB9raOI1Go9HEh6ZiDpu4kDbj3Yh5FTGv0Wg0mi5Io9VKIvKyiLwCZNTNm9PLQEa7\nWdjFUEoNVEqFzNQkrS3rsFJqbizsigdKqZeVUv8Tbztai1JqtlJqbxuf4zGl1PNNbL9TKbW6LW2I\nJUqpPyilzimlNsTblkiUUlVKqYHxtqMjEM0D6ssNrLszxnZ0KdrxoS10Ei+ukYdXu9lvCvLgtihb\nRFaLyMi2KDviHP8rIvdAbF8w4oFSajZwHdBXRKa3opyYC6KIuETkcCzL7Kw0FXO4Ffh3YJBS6t2I\nTS7gbFsb1snpNA9tAKVUooh06AGcYmRjV0sB0+muRyllwegzdVhEvM3t3xVQSllEJNj8nh0MEWlw\nwvgB84ANwBxzPg+YDCQ2dpyeBOAQcK05bwF+BpzBaPn1LSAEJJjb04AXgZPAceB/IrYNAZYDZebx\nrwNpDZ2nARu6Y8SKKoAC4PvA6ojtIeCbQDFwwFx3j7l8FvgH0Cdi/18CJWZ524Ex5vpFwC6g0rT/\n4QZsGQXUYKR8rwLOmev/ADwDvGcevwEY3JiN5j0Z/u7MfVYCXzXnhwKrgHLz+3rTXP+JeVy1ef5/\na8DGBODn5nEHgfsu+p3uwujrU2nacm/EsXnAsYjlw8DDwDbTlj8ByY38TkeAyeb8beY5R5nLXwX+\nbs4vBl4z54+a+1WZ9kzH8PBXAz8FzpnXcH0T9+h/AfvN43cBNzWx72LgLfM6KjHikeMjtvcF3gZK\nzfPe38Cxr5n3zr0X3QtPmvvdAGwFzgNrMZrP15XRD/ibWX4Z8BtgJEY6n3r3VAO2r8T4T6019/sn\n0AN4gwv/jQEX3XODMVpobgHui/gfrwUeb8E1fyXez6QWPcfibUBXnKgvDl8H9gBZGLGaFRidCese\nOn8HfgvYgUwgH/PBgyEOc4Ek84ZeBfyyofM0YMOfgD9iDO06ynygfBKxPQR8CKQDycC1GA/GieYf\n42lglbnvAmAjkGoujwB6m/OngKvM+TRgUiP2fJkIcTLXvWz+2XPMP9/rmA/0RmwcyKXisKLuzwe8\nCTxmzluBmReVNbgh2yJ+p13mnz4d+Pii32kRMMicvxpw110rl4rDIQyh623+5ruBrzVy3leA/zDn\nf48hhF83l18FHjTnF3NBHBoSyTsBP4agKPN6TjRxvZ+P+A2/gCGcvRvZd7FZ9ufM3+lhjAeiBUNU\nNwGPY9REDMIQz/kXHftpc9l28b0ATMJ48Zhq2n6H+R0mmefYhiHcdvM+mNnYPdWA7SuBfaZdqeZv\nXIxxv1vM7/+lhu4TYAyG0I4E/h+wzrTvsq853s+kFj3H4m1AV5yoLw7Lqf+WOa/ujw30wnj7sUVs\nvxVY3ki5NwGbGzrPRftZzJtzWMS6/+FSzyEvYvlF4EcRy06zjP7ANUARMI2IB5K53xGMt8HUZr6T\nOy/+I2N4Dr+PWF4I7GnCxoE0LQ6vAL8Dsho4f3PisBy4J2J57sXnumj/vwMPmPN5XCoO/x6x/GPg\nt42U8xXgH+b8bnO5zuM5DEw05xdzQRwa+h7uBIojlh3mPj2jvGe31D3MGti2GFgXsawwPN1Z5j1x\n5KL9H8N84JrHrmzqXsB4OXrqon32YojwDIy380t+h4buqQb2WYH5wmAu/wz4V8TyDcCWxu4T4D8w\n7v2zwBBz3WVfc2ecOmVAq5PRBzgWsXw0Yn4AxtvRKaXUeaXUeeA5DA8CpVQvpdSflFLHlVIVGG5q\n9yjOmYnxRhN53uMN7Be5vQ/Ggx4AEXFj/CGyRGQFRvXP/wElSqnfKaVc5q43Y7xVH1ZKrVRKXW6A\nsSRivgZIacLG5ngU48FVoJTaqZS66zKOvfh3qvd9KaUWKqU2KKXOmr/TIpr+LU5HzDd0XXV8AsxW\nSvXGEPW/AlcppQZgVCFuvYxrCJ9TRDzmbIPnVUrdoZTaEnHfjaXp6wl/H2I8AY9jeFn9gb515Zhl\nPQb0bOjYRhgAPHxRGdkYv0k/jAdxqJkymiLyHvNiiE3kcmO/DRjeW3/gfRE5EGFva6+5w3NZ4qCU\n6qaUGt9WxnRRTmHcXHVEzh/D6FjYXUQyzClNRMaZ23+IUbUxVkTSgNuJ7jc7g1EX2y9iXb8G9pOI\n+ZMYb6QAKKWcGA+LEwAi8hsRyQFGA8OBR8z1G0XkJgxBegf4SyM2SSPrmyPyOLf56YhY1zu8o0iJ\niNwrIlnA14BnL6OF0ika+b6UUskY9cs/wXgTzwDeJ/qAcKPXLiL7MTqa3o9RjVeF8ZC/FyOG0FAZ\nLf0uATCF5/cY8a9u5vXspOnrifw+EjAe3icw7uFDEfdvhoikisgNEbY2Z+9R4AcXlZEiIn82y+9v\nBrIvpiXfw+Ue8yxGTOx6pdRV5rpYXHOHp9kHjVJqlVIqVSnVDaOe7QWl1C/b3rQuw1+AB5RSWUqp\nDIxAIAAicgpYCvxCKeVSSiUopYYopa42d0nBeCBWmplxH4nmhGK0jPgbsFgpZVdKjcQQlqZu2DeB\nu5RSE8yH4Q+BDSJyVCmVo5SappRKwniQeYGgUipJKXWbUirNPGcV9ZMzRnIayDbLqOOyWtuIyBmM\nB9LtSimLUuorGHEZozCl/k0plW0ulpvXW/fGWRK5bwP8BXhQKdVXKZUO/CcXvi+rOZUBIaXUQmD+\nZZje3HWuwgiArzKXV160fHEZZzCuq6nraQonxrWVAQmmhzW2mWOmKKU+q5RKBB7CuAc2AIVAlVLq\nUfNesyilxiqlchqwuzGeB76ulMpVBk6l1KeUUikYMbhTwI+UUg6llE0pNdM8roRL76mGUI3MN32Q\nUrdjxEO+DDwAvGK+NBXQ+mvu8ETzFpomIpUYwahXRSQXo42yJjqexwiqbsMI6r5N/Yf0HRgPnt0Y\nwa+/cuFt+HsYrcMqMFoeXXxsU9yHESA+jVEX/yZGDKGOeuWIyDLgCfMcJzGCbF80N6divGmew6gH\nL8NoFQPwJeCQWe11L0aLm4ZYjhEMPK2UqnPrG3rDau4N+R4MkSzD8GIixzfPATYopaowWls9IBfa\nrC/G+HOfV0p9voFyn8cQ6u0YL0H/AoIiEjLf5h/AEJBzGHGhfzRh98U09ya5CuNF4JNGluuVYVYZ\n/QBYq4yOZNMaOUeD5xSR3RgB3vUY98dYYE0z9v8DIzvzOYzf+HMiEjRfCm7AaMhwEEO4fo9xzzR2\n7fXWicgmjN/1GbP8Yoz/BWZ10o0YLdGOYry1f8E8dBmX3lON2d/guRvZjlKqP0YLvTtExCMib2L8\nf3/RwmvudESTlXUHxlvSKxjNuAqUUttFpMnqJaXUS8CngNKIapKL93kaIwjpAe4UkS3m+scwHjoh\nYAdwl+issK1CGanXe4rI5dTDX7GY3sFvRWRgvG2JN0qpJ4GhInJ7vG3RtB/ReA5PYbz5HjCFYQiG\nsjfHH4DrG9uolFqEccMNw3jj/K25fiDGW8RkU1QsXHiD1USJUmqEUmq86abnYrSC+Xu87eqomNUV\ni5RSiWYV3pMYVXOaLlJNork8mh3sR0T+ilHVUbd8AKOFSnPHrVZN5yj5NIY3gojkK6XSlVK9MDrZ\n1AIOpVQQI/h4ornzaS7BhVGV1BejbvZnIvLP+JrUoVEYVU9/wmhd9B7w3Xga1IHoEtUkmssjmpHg\nfoLRu7YG+ACYAHxbRF5r5bmzuLTpYJaIbFZK/RyjfrEG+FBEPm7lua44RGQjMCzednQWRKQGyI23\nHR0REflevG3QtD/RjCG9QEQeVUp9FiMY+TmMJnatFQdowF01q60ewmhWWQH8VSl1m4i80cC++m1G\no9FoWoCINFldGE3MoU5AbgDeEpEKYuNinqB+u/K6dtM5GL0xz4qRaO1vwMwGjgc6Rw/vJ598Mu42\ndBU7O4ON2k5tZ0efoiEacXhXGbnqpwDLlFI9Mdo4t5Z/YjZXU0av2nIRKcHoqj7dbD+sMJrN7o7B\n+TQajUYTJdEEpP/LjDtUiEhQKeXGyPHTJEqpNzGyufZQSh3DaP2RZJb5OxF532wdsh+jo9dd5rat\nSqlXMdoUh4DNGG2INRqNRtNORBOQtmL0rr3aeJFnJUb+nyYRkVuj2Oe+Rtb/BCNVQZcgLy8v3iZE\nRWewszPYCNrOWKPtbH+i6QT3IoaIvIIRQL4dCIjI3W1vXtMopSTa+jONRqPRGCilkGYC0tGIwyW9\noaPpId0eaHHQaDRXImYtTlQ09IyMRhyiCUgHlFJDIwodgpHxU6PRaDRxIlatkhojmn4OjwDLlVKH\nzOWBmMFjjUaj0XRNmhQHZeRQn4CRv3+EubpIrpCBwTUajeZKJZqYQ6GITG0ney4LHXPQaDRXImbM\noMX7xSog/UuM/gl/xuiPoDBGCtzcrGVtjBYHjUZzJdJRxGElDaTLEJFrmrWsjdHioNForkQ6hDh0\nZLQ4aDSaK5H2EIdoekg/zKWeQwWwSUS2NmudRqPRaDod0VQr/REjU+q7GPGGT2EM3TkAI0vrj9va\nyCZs056DRqO54ugQ1UpKqdXAQhGpNpdTgPcxhgDdJCKjmrWwjdDioNForkTao4d0NJ3gMgF/xHIt\n0EtEPEop3d9Bo9Fo2pn2eCmORhzeAPKVUu9gVCvdCPxRKeVEj7Og0Wg0XZKoWisppaYCV2EEpteK\nMT5x3NHVShqNRnP56KasmstGRPD7/fh8PgKBAImJiSQlJZGYmEhiYuJl1XVqNJqOSaxiDpouQCAQ\n4PDhwxQXF1NcXMz+/fs5efIkZWVlnDlzhjNnzlBZWYnP5yMpKQmbzYbFYiEQCFBbW0sgECAUCuFy\nuUhLSyM9PZ20tDR69epF3759L5n69+9PSkpKvC9bo9G0EO05dEFEhEOHDrFhwwby8/PJz89n+/bt\n9OrVi6FDhzJs2DCGDh1KdnY2mZmZ4SktLQ2r1UpCQsOZ3IPBIJWVlVRUVFBRUUF5eTklJSWcPHmS\nU6dOcfLkSU6ePMmJEyc4evQoaWlpDBs2LHy+YcOGMWLECEaMGIHVam3nb0Wj0dQRq6asKUCNOX70\nCIzsrEtEpDZ2prYMLQ4X8Pv9rF69mvfee4/33nuP6upqZs6cybRp05g2bRpTpkxp1zf5UCjEyZMn\nw55K3VRUVMThw4cZOnQo48aNY/z48eHP7OxsXW2l0bQDsRKHzcAsIANYCxQCfhG5LVaGtpQrXRxE\nhA0bNvDCCy/wt7/9jREjRnDDDTdwww03MGHChA77oK2pqWHPnj3s2LGD7du3s2PHDrZt2wbA1KlT\nyc3NZerUqUydOpUePXrE2VqNpusRK3HYIiKTlFL3A3YR+YlSapuITIilsS3hShWH8+fP88orr/DC\nCy/g9/u5++67uf322+nTp0+8TWsxIsLx48cpKCigsLCQgoICNm3aRPfu3cnNzSU3N5fp06czZcoU\nkpOT422uRtOpiZk4AN8Efgl8VUR2KaV2iMi42JnaMq40cTh//jy/+MUvePbZZ7n++uu59957ufrq\nqzush9BaQqEQRUVFYbFYv349RUVFTJ48mdmzZzNr1ixmzJhBenp6vE3VaDoVsRKHOcDDGP0bfmyO\nIf2giDwQO1NbxpUiDuXl5fzqV7/imWee4TOf+QyPP/44gwYNirdZcaGqqor169ezZs0aVq9eTWFh\nIUOHDmXWrFnMnj2bvLw8evXqFW8zNZoOTUz7OSilnCLijollMaKri0MwGOTFF1/kiSeeYNGiRTz+\n+OMMGTIk3mZ1KPx+P1u2bGH16tV88sknrF69mqysLK699lquueYa5syZQ7du3eJtpkbToYiV5zAT\neAFwiUg/pdRE4F4R+WbsTG0ZXVkcdu3axVe+8hWSkpJ45plnmDhxYrxN6hQEg0G2bNnC8uXLWb58\nOevWrWPYsGFce+21XHvttcyaNQuXyxVvMzWauBIrcSgAPg/8Q0Qmmet2iciYmFnaQrqiOASDQX76\n05/y85//nB/84Afcc889XTam0B74/X4KCwvDYlFYWMiECROYO3cu8+fPZ9q0aSQlJcXbTI2mXYmZ\nOIhIbl2rJXOdbq3UBpw+fZovfelLBAIBXnnlFQYMGBBvk7ocNTU1rFu3jo8//pgPP/yQgwcPcs01\n17BgwQLmz5/P4MGD422iRtPmxEoc3sJoqfQMMA14AMgRkS/GytCW0pXEYc2aNdxyyy3ce++9PP74\n41gslnibdEVQWlrKRx99xNKlS1m6dClOpzMsFNdccw2pqanxNlGjiTmxEodM4NfAdRgpu5cCD4jI\n2VgZ2lK6iji8+OKL/Pd//zevvvoqCxYsiLc5Vywiwo4dO/jwww9ZunQpGzZsYNKkScyfP58FCxYw\nefJkLdqaLoHOytrBERGeeOIJ/vKXv/Duu+8yYsSIeJukicDj8fDJJ5+ExaKkpIS5c+eycOFCrr/+\nenr37h1vEzWaFhErz6EncA8wkAtZXEVEvhILI1tDZxaHQCDAN77xDbZt28a//vUvMjMz422SphmO\nHz/O0qVLWbJkCR9//DGDBw9m4cKFLFy4kGnTppGYqJMcazoHsRKH9cAnwCYgZK4WEXk7Jla2gs4q\nDoFAgC9/+cuUlJTwzjvv6NTWnZDa2lrWr1/PkiVLeP/99zl+/Djz5s0LexW6I56mIxMrcdgqIh2y\nkX1nFIdgMMgdd9zBmTNn+Mc//oHdbo+3SZoYcOLECT744APef/99li1bxtChQ1m0aBELFy4kNzdX\nxyo0HYpYicP3gfUi8q9YGhcLOps4iAj33nsvhw4d4t1339XC0EXx+/2sW7cu7FWcOnWK+fPnh70K\nXYWoiTexEodqwAH4gboxHERE4t7Gr7OJwxNPPMEHH3zAihUrdFXSFcSxY8fCXsXy5csZMWJE2KvI\nycnRXoWm3dGtlToQv//97/nZz37GmjVr6NmzZ7zN0cQJv9/P2rVref/991myZAklJSUsWLCAhQsX\nsmDBAj1+haZdaJU4KKVGicgepdTkhraLyOYY2NgqOos4rFy5kltuuYW1a9cydOjQeJuj6UAcPXqU\nJUuWsGTJElasWMGoUaPCXsWUKVMaHbJVo2kNrRWH50XkHqXUSuCSnUTkmphY2Qo6gzgcOnSIGTNm\n8Prrr3PdddfF2xxNB8bn87FmzZqwV1FWVhb2KubPn6+9Ck3M0NVKccbr9TJz5kzuuOMOHnrooXib\no+lkHD58mA8++IAlS5awcuVKRo0axfXXX69jFZpWE6uA9M1c6jlUADtEpLR1JraOji4O999/PydP\nnuStt97SmVU1raLOq6gTi9OnT4dbQC1YsEDHsTSXRazE4V/ADGCFuSoP2AwMAp4SkVdbb2rL6Mji\n8Pbbb/Poo4+yadMmPYylJuYcPXqUDz/8kCVLlrB8+XKGDRsW9ipyc3N1b21Nk8RKHJYCt4tIibnc\nC3gNuBX4pLFxHZRSLwGfAkobG29aKfU0sBDwAHeKyBZzfTrGAENjMLyWr4jIhgaO75DicOrUKSZO\nnMi7775Lbm5uvM3RdHH8fn+4t/aSJUs4duxYuLf2ggUL6NOnT7xN1HQwYiUOe0RkVMSyAnaLyKjI\nMR4aOG42UA282pA4KKUWAfeJyCKl1DTg1yIy3dz2CrBKRF5SSiUCThGpaKCMDicOIsKNN97IlClT\n+N73vhdvczRXICdPngxXP3388ccMHDgw3AFvxowZenAjTczE4VlgAPAXjJTdNwPHge8A7zXVakkp\nNRB4txFxeA5YISJ/Npf3AnMAL7BFRJoddaUjisNLL73EM888w4YNG7BarfE2R3OFEwgE2LBhQ9ir\nOHToUL3MsllZWfE2URMHYiUOCcDngFkYVTxrgbejeSo3Iw7vAv8rIuvM5Y+B/wSCwO+A3cAEjIR/\nD4qIp4EyOpQ4nD59mnHjxrF8+XLGjWuwJk2jiSunT58Oxyo++ugjsrKywkJx1VVX6ReaK4S4N2WN\nQhx+JCJrzeWPgUeBBGA9MFNECpVSvwIqReS7DZQhTz75ZHg5Ly+PvLy8NriS6Lj11lsZOHAg//u/\n/xs3GzSaaAkGgxQUFLBkyRI++OADioqKmDNnDvPnz2f+/PkMGzZMt7LrIqxcuZKVK1eGl7/3ve/F\nrCnrj4BeGNVKEGVupSiqlVaKyJ/M5bpqJYWR6G+QuX4W8F8ickMDZXQYz2Hp0qV87WtfY9euXTgc\njnibo9FcNmfOnGHZsmXhIVMTExOZP38+8+bNY+7cuXTr1i3eJmpiRKyqlQ4AN4jInhYYMJDGxSEy\nID0d+FVEQPoT4G4R2aeUWgzYReQ/GyijQ4iDz+dj7Nix/PrXv2bRokXxNqceoZAPn+84Pt8JAoHz\nBAKVBIOVBAKViPgRCQEhREIolUBCgp2EBBsJCXYslhSSkrqTlNTDnLpjsaTqt8krABFh7969YaFY\nvXo1o0aNCnsV06dP14HtTkysxGGtiFzVgpO/ieEJ9ABKgCeBJAAR+Z25zzPA9YAbuKsuX5NSagJG\nU1YrcMDc1mFbK/385z9nxYoVvPfee3Gzwec7hdu9g+rq7bjdO/B4duP1HiUQOI/V2pfk5GySkrph\nsaSSmJiKxeIiIcGGEVJKQKkERIKEQjUEgzWEQl6CwSpqa88SCJyltraM2toyQiEfSUndSU7uh802\ngOTk/thsA8z5AdjtQ0hMdMXte9C0DT6fj/Xr14fFori4WFdBdWJiJQ6/BnoD72Ck7QajWulvMbGy\nFXQEcThz5gyjR49m9erVjBw5st3O6/Ueo7x8BeXlKzh/fgXBYBUpKeNxOsfjdI7D6RyDzTYAq7UX\nSsUuzUIo5MPvP4PPdwyf7yhe7xG83qP4fEfweo9QU3OAxMQ0HI4ROBwjsdtHmPOjsNkG6AdIF6Gu\nCuqjjz5i6dKlWCwWXQXViYiVOLxsztbbUUTuapV1MaAjiMO3vvUtLBYLTz/9dJufq6bmAKWlf6a0\n9E/4fCdJT88jI+Ma0tOvweEY1SEevCIhfL7jeDxF5rSXmpoi3O5dBIMeUlLGk5IyAadzgvk5FotF\nD3rUmWmqCmrevHlMnz5dt4LqYMS9tVJbE29xKC4uZsaMGRQVFdG9e/c2OUcgUMXp0y9TUvIaXu8R\nMjM/T8+eXyQt7SqzSqjz4Pefwe3eTnX1tvBUU1OEzTaQlJSJpKRMITU1l5SUySQm6sGQOisXV0Ht\n27ePmTNnMnfuXObOncvEiRN1KvI4EyvPYQTwLNBbRMYopcYDnxaR78fO1JYRb3G47bbbGDVqFI8/\n/njMy/Z6j3PixNOcOvUiGRlz6dPnHtLTryEhoWvlzAmF/Hg8e6mu3kpV1UYqKwtwu3dgtw/G5crF\n5ZpKamouTuc4EhJ0ALQzcu7cOVatWsWyZctYtmwZpaWl5OXlhcVi+PDhHcLrvZKIlTh8AjwCPCci\nk8z0GTsby6nUnsRTHHbu3MncuXPZv38/LlfsArA1NQc4fPgpzp59l1697iA7+0Hs9kExK78zEAr5\ncbt3UFlZQFVVIZWVBXi9h0hJmUha2kxSU68iLW0mVqvORNoZOXHiBCtWrAiLRSgU4tprrw2LRXZ2\ndrxN7PLEShw2ikhOZB4lpdRWEZkYQ1tbRDzF4eabb2bGjBl85zvfiUl5tbXnOHx4MSUlfyQ7+0Gy\nsu4nKUlnc60jEKiiqqqQioq1VFSspbJyA1ZrT1JTZ5KWdhVpaVfhcIzsdFVtVzoiwv79+1m+fDnL\nli1jxYoVZGRkhIUiLy9PD3LUBsRKHJYA9wN/NT2HzwNfFZGFsTO1ZcRLHLZt28b111/PgQMHWt3h\nTUQ4ffplDh58jMzMmxk4cDFWa2aMLO26iARxu3ebQrGWiop1BALlpKbOIC1tJmlpV5OaOpWEhOR4\nm6q5DEKhEDt27Ah7FWvWrGHw4MFhsZg1a1ZMPfUrlViJwxDg9xhjOpQDh4DbRORwjOxsMfESh1tv\nvZVJkybx6KOPtqocr/cYRUVfpbb2HCNG/A6Xa0qMLLwy8flOUVm5joqKNZSXr6ampgiXayrp6XNI\nS5tDauo03TKqk1FbW0thYWFYLDZu3Mjo0aPJy8tjzpw5zJo1i7S0tHib2emIaWslpVQKkCAilbEw\nLhbEQxxjXScIAAAgAElEQVQOHDjAtGnTOHjwIKmpzWYQaZTS0r9QXHwf2dkP0q/ff3a5QHNHIBCo\noKJiLeXlqygvX4XbvROXaxJpaXNMwZiJxeKMt5may8Dr9ZKfn8+qVatYuXIlBQUFjBw5MpxXbdas\nWXpwrSjQTVnbgK9//ev06NGD73+/ZY21QiEfBw58h7NnlzBmzF9wuSbH2EJNYwQC1VRWrqe8fBUV\nFauoqtqC0zmW9PQ6sZhFYmLLBV/T/vh8PgoKCsJikZ+fz/Dhw5kzZw55eXnMnj2bjIyMeJvZ4dDi\nEGNOnz7NqFGjKCoqatGYvX7/GXbu/CxWayYjR75MYqJ2h+NJMFhDZWU+FRWGZ1FVVYjdPoL09Dxz\nmq1/o06G3++nsLCQlStXsmrVKtavX8/QoUPD1VBXX3217r2NFoeY8+STT1JSUsJzzz132ce63XvY\nseMGevb8IoMG/Y9uVdMBCYV8VFYWmmKxksrKDVosOjl+v59NmzaFxWLdunUMGjSIOXPmMHv2bGbN\nmnVFDqMaM3FQSl0FDATqKsZFRF5ttYWtpD3FwefzMWDAAJYvX87o0aMv69jKyo3s2HEDgwf/iD59\n7mwbAzUxp04systXUl6+kqqqfC0WnZza2lo2bdrEqlWrWLNmDWvXrqVbt27MmjUrLBZXQqe8WLVW\neh0YDGzFGKUNABG5PxZGtob2FIfXXnuN1157jaVLl17WceXln7Br1+cZMeJ5evT4TBtZp2kPtFh0\nPUKhEHv27GH16tWsWbOGNWvW4PF4mDVrVniaNGlSl0tPHitx2AOMjnuGuwZoL3EQEaZOncrixYu5\n4YZLxhxqlIqKdezc+RlGjXqTbt2ua0MLNfFAi0XX5NixY2GhWLNmDQcPHiQ3NzfsXUyfPp2UlM6d\n+ytW4vBXjDGcT8bSuFjQXuKwfv16br/9dvbt2xd1wrCqqk1s376QkSNfpXv369vYQk1HQItF1+T8\n+fOsX78+7F1s2bKFkSNHhquhrrrqKnr37h1vMy+LWInDSmAiUAD4zNUiIp+OhZGtob3E4a677mL0\n6NE88sgjUe1fU3OALVtmMWzYs2RmfraNrdN0VLRYdE28Xi+bNm0Ki8W6detIT09nxowZzJgxg5kz\nZzJ+/HgSEztu36VYiUNeQ+tFZGWLLYsR7SEOFRUVDBgwgH379kXVfLW29iybN8808yN9s01t03Qu\ntFh0TUKhEEVFRaxfvz48HTlyhClTpoQFY8aMGWRmdpy0OLopawx47rnn+Pjjj3nrrbea3TcUqmXb\ntutwuaYydOjP2tQuTedHi0XXpby8nPz8/LBY5Ofn06NHj3rexdixY+PmXcTKc5gBPA2MApIBC1At\nInHvStoe4jBlyhR++MMfsmDBgmb3LS5+iJqaYsaNe1f3Y9BcNg2JhcMxMiwWRg9uLRadkbpWUevX\nr2fdunWsX7+eEydOkJOTExaM6dOnt1sG2liJwybgi8BfgBzgDmCEiPxXrAxtKW0tDlu2bOGmm27i\n4MGDWCxNj8NcUvImhw49zpQpG0lK0t31Na1Hi0XX5ty5c/W8i4KCAnr16kVubi65ublMmzaNCRMm\nYLPZYn7umImDiExRSm0XkfHmuitiPIcHH3yQjIwMFi9e3OR+Hs8+tmy5igkTPiYlZUKb2aO5stFi\n0bUJBoPs3r2bwsJCCgoKKCgooKioiNGjR4cFIzc3lxEjRrR6mNVYjgQ3D3gBOAWcBr4sInF/Cral\nONTW1pKdnc3atWsZOnRoo/uFQn42b55Jnz53kZX1rTaxRaNpCC0WXR+Px8PWrVvJz88PC0ZZWRk5\nOTn1BCMrK+uyyo2VOAwASgEr8G0gFXhWRPZfljVtQFuKw5IlS3jqqadYv359k/sdPPgY1dU7zDhD\n1+5yr+nYaLG4MigrK6vnXRQUFGC1WuuJRU5OTpPjXLRKHJRSy0RkrlLqJyLSulFt2oi2FIfbbruN\nGTNmcN999zW6T0XFBnbt+iw5Odv0eMaaDocWiysDEeHw4cP1xGLLli3069ePnJyc8DRx4kScTmP8\nktaKw27gbuAl4N8BBYR3FpHNMbq2FtNW4lBdXU12djbFxcWNtk0OhXxs3DiZgQO/S8+et8TcBo0m\n1hhiURAhFgVaLLoogUCAnTt3smnTJjZu3MjGjRvZtWsXQ4YMIScnh5dffrlV4vBvwFeBq4CNF28X\nkWticRGtoa3E4fXXX+dPf/oT7733XqP7HDq0mOrqLYwd+46uTtJ0ShoTC2OkvNmkps7U45l3IXw+\nHzt37qSwsJBvfOMbMYk5fFdEnoqplTGircThxhtv5Itf/CK33XZbg9vd7r1s3TqbnJytJCdfXiBI\no+moRIpFRcVaKivXY7X2IS3tKnOahd0+TL8MdQFiOZ7DZ4CrMaqVVonIu7ExsXW0hThUVFTQr18/\njh8/3uAY0SLC9u3X063b9fTr9+2Ynluj6UiIBHG7d1JRsZaKijVUVKwlFKohNXUmaWmzSEu7Cpdr\nMgkJyfE2VXOZRCMOzfbdVkr9CJgKvIERd3hAKTVTRB6LjZkdi/fee4+8vLwGhQHg7Nl38fmOkZXV\neKBao+kKKGUhJWUCKSkTwnnCvN5jplexluLiN/B4inG5Joc9i9TUmboTaBchmmqlHcBEEQmayxZg\nq4iMawf7mqQtPIfPfvaz3HTTTXz5y1++ZFsw6KWwcAzDhz9Ht27zYnpejaYzEghUUlm5wfQu1lJV\nlU9ycv+wZ5GWdhU222BdFdXBiFU/h+3ANSJy1lzuDqyo6y0dT2ItDlVVVWRlZXHkyBEyMi59+zl2\n7BeUl69g3Lj416qJCLWltdQcqMF30of/hN/4LPETrAwSrAoSqAoQcoeQoCAhgRAgoJIVFocFi9NC\ngiMBi8P4TExLJKlnEtaeVpIyIz57W0lM7bjphzUdh1AogNu9LVwNVVGxFpEAqanTzWkGLlcOiYmd\ne7Cczk6sxOFW4EfASnPVHOC/RORPsTCyNcRaHP785z/z8ssvs2TJkku2BQIV5OcPY8KE5aSkjI3Z\nOaNBQoJ7t5uK1RVUb63Gs9uDe7cbBOzD7CRnJ5PcNxlrlhVrL+NBbnFZjMlpQSUqSDBuCBSEfCFC\nnhBBT5CgOxieD5wPUHumltoztfjP+KktNedP+yEBbANsJPdPxtbf/Bxgwz7UjmO4g8Q0LR6aSxER\nfL7jVFaup7JyA5WV66mu3o7DMTwsFqmp03Wgu52JZUC6L0bSPYACETkdA/taTazF4ZZbbmHevHnc\nfffdl2w7dOi7eL1HGTXq5ZidrylqDtdQ9vcyyleUU7G2gsSMRNJnp+PKceEY7cA52klSz6R2+UOJ\nCIHyAL6jPrxHvHiPevEdMeZr9tfg2efB4rTgGOHAPtwQi/DnEDsJyTpDreYCoZCP6uqtVFRcEIxg\nsLqed5GamktiYtwTP3dZYuU5KOBzwCyM1kqrReTvMbOyFcRSHPx+P7169WLPnj2XDPnn95dQUDCa\nKVM2YbcPjMn5GsJT7OHMW2c48/YZfEd8dP9Md7rN60ba7DSS+3bcFiEigv+UH88+DzX7aup9+o74\nsA22kTI+Bec4Z3iyDbDpN0VNGJ/vJJWV+WEPo6pqMzbbQNLSZoQFw+EYqVPhx4hYicNvgSHAmxit\nlb4AHBSRuA9zFktxWL58OY899hj5+fmXbDtw4BFCIS/Dhv0mJueKRILC2ffOcvzp47h3ucm8OZPM\nmzNJuzqNhMTO/0cI+UK497hx77gwVW+vJlgVxDnWiXO8k5RxhnCkTEzRsQ0NYAyc5XZvN4PdhmDU\n1pbhcuWQmjoVl2sqLlcuyclZ+iWjBcRKHPYCo0UkZC4nALtFZGTMLG0hsRSHb3/723Tr1o0nnnii\n3vra2rPk5w8nJ2crNlu/mJwLIFAZ4NTzpzjxzAmSeiWR/UA2mZ/PJMHa+QUhGmrP1RpCsaMa93ZD\nMNw73CRnJeOa4iJlckr4Myk9Kd7majoAfv8ZqqoKqaoqpLKykKqqApSyhIWiTjSSkrrF29QOT6zE\n4T3gPhE5bC4PBJ4RkRtiY2bLiZU4iAjDhg3jrbfeYuLE+sNUHDr0Xfz+U4wY8XyrzwMQrAly4v9O\ncOynx8i4NoPsh7JJnabrVgFCgRCevR6qN1dTtamKqk1VuLe5SeqZVE8wXJNdJHXXgnGlYwS7j4aF\nwhCOTSQl9YzwLqbick3GYnHG29wORWsT79W110zD6ARXgBFzyAUKRWRODG1tEbESh7179zJv3jyO\nHj1az0UNBCrYsGEIU6bkY7cPadU5RISyv5dx4OEDpExMYdD3B+Eco2/Y5pCg4NnnoWpTVVg0qrdU\nk9gtEVeOi9TcVFy5LlxTXCS6dJXUlY5IEI+nqJ534Xbvwm4fgss1ldTUXFyuqTid40hIuHJfMFor\nDnnmrGDEGiIREVnVagtbSazE4ac//SkHDx7kt7/9bb31R4/+hOrqbYwe/Uaryvce87Lva/vwHvEy\n7OlhZMzVPUhbg4SEmv01VG2sorKgkqqCKqq3VWMbZAuLRWpuKs5xThKSroxqOk3jGK2jdoS9i8rK\nQrzeQzidY0hJmYzLNQWXazJO59grJhVIq6uVlFKJwMcikhdj22JCrMQhLy+PRx55hE996lPhdaFQ\nLfn5Qxg79h1crsktKldEOP3KaQ4+cpCsB7Lo/1/99cOqjQjVhnDvcIfFojK/Eu9hLykTU+oJhm2w\nbiWlgUCgGrd7G1VVm6mq2kR19WZqavbjcIwgJcUQi5SUyaSkTMBiscfb3JgTq5jDMuBmESmPpXGx\nIBbiUFVVRd++fTl9+nR4IAyA0tK/cOLE/zFpUsscpEBVgOJvFlO1uYrRb44mZbzuEdreBCoDRuyi\n4IKHEfQEDbGYZlZJTXVhzbTG21RNByAYrMHt3k5V1WaqqzdTVbUZj2cPdvuQsIdhCMbETt/DOyaJ\n9wA3sEMptRTwmOtERB5o5uQvAZ8CShvLw6SUehpYaJZ7p4hsidhmwRhH4riI3BiFnS1i1apV5Obm\n1hMGgOPHf0W/fo+0qEzPfg87P72T1JmpTCmcgsVhiYWpmsskMTWRjGsyyLjmQjWe76QvLBTHfnGM\nqsIqkronhT2L1GmppExK0b/ZFYjFYic1dRqpqdPC60IhH273LlMwNlFS8gZu905stv6mYFzwMLpa\nK6loxOFv5hRJNK/rfwB+A7za0Eal1CJgqIgMU0pNA34LTI/Y5UFgN+CK4lwtZunSpcyfP7/eusrK\nfPz+U/To8enLLu/8ivPsvnU3AxcPJOvreqyHjkZy32Qyb8ok8yZjEBsJmQHvfMO7KPljCZ7dHhwj\nHYZgTEslNTcVx0gHyqKro640EhKScbkmm1XLRuaEUKgWj2dvuDrqzJm/43ZvJzEx3cxiOxGn08hm\na7cP6bQd96JKn9Hiwo1mr+825DkopZ7DSOD3Z3N5LzBHREqUUtnAy8APgP9ozHOIRbXSyJEjefPN\nN5k0aVJ43Z49d5CSMoF+/R6+rLJK3yql+JvFjP7TaDKu1UHnzkrQG6R6S3U4dlFZUEltaa3ROmpa\nalg0OnKvdU37IhLC6z1EdfU2c9pKdfU2AoGzOJ3jLhKNcXFvWhur8RwONbBaRGRwiy0zyAKORSwf\nN9eVAL8EHgHatAPAkSNHOHfuHBMmTAivq609R1nZPxky5BeXVdbJ509y+MnDjF86HtfENnV2NG2M\nxWYhbUYaaTMujKdce7Y2XB116vlTFN1TRIItIVwV5cp14crRzWmvVJRKwG4fgt0+hMzMz4XX19ae\nx+3eTnX1Nior8zl58vd4PHtITu4XHiujTjQ6Wm/vaO7kqRHzNuDzQPcYnf/ib0IppW7AiFNsiWhO\n2yiLFy8Oz+fl5ZGX1+whYT766CPmzZtHQsIFt6+k5HW6d1+E1doj6nJOPn+SI98/wsRVE3EMc0R9\nnKbzkNQ9ie4Lu9N9oXHriwjeg14qCyqpzK+k7P+VXWhOa1ZFuaa5cI51dok0KJqWkZSUQXr6HNLT\nL3QLM6qlinC7DS/j+PFfU129DZEAKSkTcDrHmdNYnM4xJCa2/mVz5cqVrFy58rKOaVG1klJqs4g0\n274zimqllXWpv81qpTzgAeB2IIAhRqnA2yJyRwNltKpa6ZZbbmHRokXhgX1EhMLCcQwb9gwZGXlR\nlXH6tdMcfOwgE1doYbjSCfkvNKetzDe8DO9RL65JrnBVlCvXpZMOahrE5zttCsYO3O6duN078Hj2\nYLX2ihAL49PhGEFCQstb2cWqKesULgSgEzBSd39DRCY0flT42IE0Lg6LMNJyLFJKTQd+JSLTL9pn\nDvCdtog5hEIhevbsydatW8nOzgagomI9e/d+mdzcoqj+vGffP0vRV4uYsHwCzlG6t7PmUgIVAaOz\nnhm7qMqvQkJySXPapIwrt7eupnFEgtTUHAiLhdu9k+rqHfh8R7DZhpCSUl80bLaBUQXAY9WU9edc\nEIcAcBgjM2tzJ38TY2CgHkqpY8CTQBKAiPxORN5XSi1SSu3HaC57VyNFtUnEfNeuXWRkZISFAeDU\nqefp0+eeqIShanMVe+/cy9h/jtXCoGmUxLREMuZmhHvFiwi+476wZ3HkB0eo3lyNta+1nmCkTEjR\n42BoUMqCwzEch2N4vVhGMOjF49kTFo2TJ5/D7d5BIFCOwzE6LBZ14pGU1POyvdVoPIfBInLwonWD\nRKShQHW70hrP4ZlnnmHbtm08/7yRUC8Y9LB+fRZTp+4mOblPk8f6TvjYNG0Tw349jMybM1t0fo2m\njlAghGePJywYlfmV1OyvwTnWeaF1VG4q9qF2VIKujtI0Tm1tOR7PrnpVU273DiABp3MMTudoHI4x\n9Ot3f0w8h7eAi+MLbwFTWmh/h2DlypXcdNNN4eWzZ98188M3LQwhf4hdX9hF36/31cKgiQkJiQmk\njEshZVxKXVN6gu4gVZuMvhdn/3mWQ48fInA+gGuyi5QpKbhyjGSD9iFaMDQXSEpKJy3tKtLSrgqv\nExH8/hI8nl243btMsWiephLvjQJGAz8FvoPRskgwAsSPiMiY1l1G62mp5xAKhejVqxebN2+mXz9j\njIYdO24kM/ML9O59e5PHFj9QjPewl7HvjNV/Sk274i/zU73pQjrzqo1VBCoMwXBNMZrSpkxJMQRD\nB7w1TdDamMNw4EaMlN2RAeEq4J7Wmxc/du/eTVpaWlgY/P4zlJevZtSoN5s8rvStUs6+f5YpG6do\nYdC0O9YeVrot6Ea3BRfSNPjP+I005puqKf1zKQceOUCgMmCIhSkYrikunXBQc9k0Kg4i8g/gH0qp\nmSKyrh1tanNWrVpVrz9Eaemf6d79hiaTaflO+Cj+VjHj/jlOj0ym6TBYM610v7473a+/0PXIX+qn\narPhWZS+WcqBhw8QrA4a1VGRgjFIC4amcZqNOXQ1YQAj3vDpT1/Im1Ra+kcGDHii0f0lJOy9cy9Z\n38rSo7ZpOjzWno0IhlkVVfJGCQf+wxSMiSmkTDKniSk4Rjp0WnkN0Ma5ldqalsQcRIRevXqxceNG\n+vfvj9d7nI0bJzBz5ulGR4Y68ewJSl4rYeLqibq3q6bL4C/1U7212sgjtaWK6q3V+I76cIx24Jrk\nCguGc7yTxBSdFqQrEat+Dl2K/fv3Y7fb6d+/PwBlZX+je/cbGxUG3wkfh588zMRVWhg0XQtrTyvd\n5nej2/wLMYxAdQD3DjfVWwzROP2H07h3uUnulxwWC9ckFykTU7D20uNgdGWiSbx3ANgArAZWi8iu\nNreqDVm3bh0zZ84ML5858xb9+j3a6P7F9xfT95t9cY7WHd00XZ/ElMRLkg6GakN4ijxhwTj646NU\nb6kmwZ4QFoyUiSmkjE8x+mLo1OZdgmg8hzHANGAW8DOl1HBgh4jc1PRhHZNIcfD5TuF276Bbt3kN\n7lv2jzLcu92M+uOo9jRRo+lQJCQlkDI2hZSxKUbWM8ye3kd94eqoktdLOLjjIP4SP45RDlLGG9VR\nKeNTcI5z6tH2OiHRiEMAqAWCQAg4g5FWu1Oydu1a7r33XgDKyv5Ot26fanBQ8ZAvxP7/2M/w54Zj\nselRwTSaSJRS2AbYsA2whQdOAmN4XPdON+7tbqq3V1P2tzKqt1djsVtwjnfiHOcMC4dzlFOnCOnA\nRJM+wwPsAH4BLBORsvYwLBouNyBdXl5Ov379OHfuHElJSWzdei1ZWQ+QmXmpE3T0p0epWF3BuH82\nOMKpRqOJEhHBd8xH9fZq3DsuCIf3oBfbYNsFsTCFI7lfsm5i28bEKiB9KzAb+CZwj1JqHfCJiHwc\nAxvblQ0bNpCTk0NSUhK1teVUVW2kW7f5l+znL/Vz9MdHmbyu2azkGo2mGZRS2PrbsPW30eOGC+Ok\nBL1BPHs9YbE48ZsTuLe7CdYEcY524hzjxDHGgXOMMW/tY9Wi0Y5E08+hrjPcSGAR8BDwKMZYC52K\nyHjD+fMfkpZ2NRbLpWMwHH7qML1v741juB6fQaNpKyw2C66JrktGTvSX+fHs8uDe5ca9y03ZO2V4\ndnmQgNQTizrxsPbSotEWRNNa6W1gInAA+AQjJFXQxna1CevWrePb3/42AGfPvkf37jdcso/3iJfS\nN0vJ3Zvb3uY1S3UgQFltLRXBIBWBABWBAO5gkIAItSIERAgBVqWwJiTU+0xOSCDVYiE9MZGMpCTS\nLBYSE3R9r6bjYe1hxTrHSvqc9Hrr/Wf8uHe5w8Jx5u0zuHe5QcA52nmJcCT1TNKi0QqiiTlMBTaL\nSLB9TIqey4k5BINBMjIyOHToEN26pbN2bS9ycjZjs/Wvt9/eu/di7W1l8PdbO0T25SMinPD52O3x\nsMvtZrfHw1Gvl+M+H8d9PmpFyExKIi0x0ZgsFhwWC0lKGVNCAgqoFcEfCuEXwRcK4Q+F8IlQGQhQ\nHghw3hQWh8VCRmIiPZKS6GO1GlNyMr3r5iPWJWsh0XRARITa0tqwl+HZfcHjQGF4FyMd9SbbANsV\nnxstVjGHbcB9SqmrzeWVwHMiUttK+9qV3bt307t3b7p3705FxVqSk7MuEQbPfg9l75QxrXhau9jk\nC4XYWFXFJ+XlrK6oYH1lJValGON0MsbpZHJKCp/r0YPs5GSyk5NJT0yM2ZtQSITqYJDzgQBn/H5O\nRUw7qqtZGrFc4vfTIymJgTZbeBoQMd8/ORm7Rbfo0rQ/SimsvaxYe1nJuDYjvF5E8Jf48ez24Cny\n4Nnj4dySc3j2eqgtq8U+zG6IxagI4RjuwOLQ93Ed0XgOL2KIyCsYabtvBwIicnfbm9c0l+M5vPTS\nSyxbtow33niDgwcfAxIYPPgH9fbZc+ce7IPtDPzuwNgba3KutpZ/lpXxdlkZK8vLGWG3Mzs9ndlp\naVyVlkYva8drDx4U4ZTPx2Gvt8HpmM9HZlISwxwOhtntFyaHgyE2GzYtHJoORKA6QM2+Gjx7PRem\nPR5q9teQ1CvpEk/DMbLrxTVi5TlMFZHxEcvLlFLbW2da+1NYWMjUqVMBI94wfPjv6233HvNy9p9n\nmXYg9l6DLxTir6WlvFpSQn5lJddlZHBrz568PmoUaYkdP4OJRSmybTaybTZmNbA9KMIxr5fimprw\ntKq8nOKaGo54vfS2WsPCMdxuZ6TDwWink37Jusmipv1JTEk0xsCYXD8QLkHBe9gbFozqTdWUvlGK\nZ68ZDDeFwj7CjmOYA/swO/ah9i7rbUTVCU4pNVRE9gMopYZgdIzrVBQWFvKlL30Jn+8EPt9JUlPr\nB5yP//I4ve/qHdOB3k/5fPzu5El+d+oUY51O7u3Th7+PHYuzi71JW5RioN3OQLudi/uaB0Ihjvh8\nFHs8FNfUUOTx8O7Zs+zxeKgMBBjpcDDK6WSUwxGehtjtJOkYh6adURaFfYgd+xA73T/Vvd42f5k/\nLBo1RTWc3nCamn01eA95SeqRZAjFMDuO4Y7wvH2wvVN38oumWmku8AegbszogcBdIrK8bU1rnmir\nlXw+HxkZGZSVlVFZ+VfOnn2PMWP+Gt5ee76W/CH55GzLwdav9S10D9XU8NSRI7xTVsYXe/bk/qws\nRjt1bqaLKa+tZa/Hw57Iye3muM/HYLv9gmCY4jHS4cDRxYRV07mRoOA95qWmuMaoqir2GPPFNXiP\neEnum4x9uCkcdd7GcDu2gba4JvKMplopqpTdSikbMAJjmNAiEfHFxsTWEa04FBYW8tWvfpXt27ez\ne/eXSE+/mr597w1vP/LDI3j2eRj1cutyKJ2rreXJw4f5Y0kJ92Vl8VB2NhlJemCgy6UmGGRfTQ17\n3O56wrG/poZeSUmMdjoZbVZN1X2mdoLqOc2VRag2hPewIRyefRdEo6a4Bt8pH7b+tgvexlA7tiE2\n7EPs2AbYSLC2rXC0ShyUUjdjiIGK+MScR0T+FjtTW0a04vDss8+yadMmXnjhBdat68Pkyeuw242m\nqqHaEBsGbGD8h+ONAd5bgIjw4qlT/L9Dh/h8ZiaLBw4kswMGljs7gVCIQ14vu00PY7fHw25TQLol\nJV0iGKMdDi3Omg5J0BvEe9AUjjpv40AN3oNefCd8WPtYw1Vc9iF2bINt4fnEtNa/CLU2IH1pD7H6\nxF0coqWwsJBp06bhdu/AYnGGhQGg7J0y7MPsLRaGI14vdxcVUREI8OH48Ux0uZo/SNMiEhMSjMC2\nw8FnelxIwxAS4YgpGrvdbtZVVvLCqVPs9nhIsVgY04Bo9NDirYkjFpvFSBHSwFAAodoQ3iNeQzwO\nGKJRmV8Znk9ITmhQNGxDbCT3TY5ZH46mPIeHRORXSqlZIrImJmeLMdF6DmPHjuWVV16hZ8+VeDzF\njBjxXHjb1mu20vfrfel5S8/LPv9fS0v5ZnExD2dn851+/XSP4w6GiHDc7FS42+0Odyzc7XZjTUi4\nxNMY43TSM0n3qtV0XESE2jO1YaGIFBDvQS+B8wFsA21GFdVgO7ZBNmyDbNgHGfOJqYY/0NpqpW0i\nMnTE21MAACAASURBVEEptUVEJsX+MltPNOJQXV1Nr169OH/+PHv2fJq+fe8hM/NmANy73Gy7bhvT\nj0y/rDo+fyjEwwcO8P7Zs/x1zBgma2+hUyEinPL72R0hFnW90oEGYxp9rV2rnbumaxL0BPEeihCM\nQ15j+ZAxn2BLwD7YTs7GnFZVK+1WShUDWUqpHRdtk4v6PnRYtm3bxujRo0lMFCor1zJ69JvhbSd+\ne4I+9/S5LGE4X1vL53ftwmGxsGnKFNJ1nXanQylF3+Rk+iYnc123C0NkighnamvreRjvlJWx2+3G\nGwqFxWJMhGjovhqajoTFYQnnlrqYOq/De8gL05svq1FxEJFblVK9gaXAjVwISHcqtm7dyqRJk6iq\n2ojdPpykJKOLfbAmSOkfS8nZnhN1WUe8Xq7fvp2F3brx0yFDsOiHQpdCKUVPq5WeVivXZGTU21bm\n97PH4wmLxpJz59jldlMVDDLK4ajnaYxxOhlgs5Gg7w9NB0IphbWnFWvP6OJtTYa9ReQ0EPYQlFKT\nRWRz60xsX+rEobx8FenpV4fXl71ThivXhS07un4NxR4P123bxrezs3moX7+2MlfTQelhtTLbamV2\nev1Moedraw3RML2N5efPs9vj4WxtbbgneKRwDLbb9UuFplMQVT+H8M4dLP4QTcxh6tSpPP300zgc\n36Nv36+HR33btmAbve/qTa8v9mr2PHvdbq7bto3FAwdyd9++MbFd07WpDATYG5Fdt048Tvv9DLfb\njQB4hGjoXuGa9iRmneAiCuxU4hAIBEhLS+PUqRNs29afadMOYrX2wHvcy8YJG5lxfAYWe9M9bo94\nvczesoWnBg7kzj59Yn0JmisMdzDI3gixqPs87vMxxGZjpMPBCIeD4Q4HI+x2hjscdNNxLU2MiVXi\nvUi+1wp72p2ioiKys7OB/SQn98dqNdrGl7xWQua/ZTYrDKV+P/O2bePhfv20MGhigtNiYYrLxZSL\nWrjVBIMUeTzs9XjYV1PD0nPneMbMRZWckMBwu50RdcJhzg+x2/U4G5o2I5qR4BKA24BBIvKUUqo/\n0FtEOvxocFu2bGHixIlUVKwiPX0OYETsT798mpEvj2zyWF8oxE07d/KFzEwezM5uD3M1VzB2i4WJ\nLtclnShFhBK/n6KaGvZ5PBR5PKypqGCfx8MRr5es5OSwlxHpcWTpVlSaVhKN5/AsEIL/396Zh8lV\nlfn/83ZXdfXeWTpJp7MvJAiBEIKsssnisEVxBh0HweA8DAoMjqgzOuPCT3+iIoiiggoSCKDAIOsI\nyjJG9kB2kpB0EiKku7NvvVZ3Le/8cW51V3dXVd/udHdVkvfzPOe555w699431ZX7vWd7Xz4KfBdo\n8ur8L/PJEitWrOC4445j376XGTPmnwBoWtGERpXyk8vTnqeq/Mv69YwLhfjulClDZa5h9EBEqAqF\nqAqFOLPbZHjEcyey3uttLG9q4pEdO1jf2kpjNMoRXi9jRnEx04uKOpJt9DP84EccTlLVOSKyHEBV\n94jIQTEIumLFCm688cvs3/9jZsxwu6J3PLKD0Z8enfE/x89qa1nV3Myrc+bYckQjZwnm5THD6y10\npyEadT2N1lY2trby4t69/Kq+no2trYTjcaYXFTGtsLCLaEwvKqI6FLLfvAH4E4d2EekYnBeRUbie\nRE6jqqxYsYIZM4rZvXskodBYt8np0Z0c/fjRac97u6GBmz/4gLeOP/6Qi7tgHD6UBwKcUF7OCeU9\ne8j7IhE2hcNs9ITjtYYGFm7fzsbWVvZFo0xNIRrTioqYWFhoy3API/yIw8+BJ4DRInIz8A/ANwfV\nqgGgrq6O/Px8ioo2UF5+KgCNSxuRgFA6O7WTvf3RKP+4di13zZjB5KKioTTXMIaMYcEgc4PBHpPi\nAE3RKO8lCceypiYe3bmTja2t7GhvZ5InHNOKiphSWOiSlze36YcWvf41VfVBEVkKnONVfVxV3x1c\nsw6clStXMnv2bBobF1Ne7vaK73x0Z8Yhpetqajh/xAj+ftSooTTVMHKG0kCAY0tLOba05wtUOBZj\nsxcO9r3WVjaHw/xl376OfFFeXodQTCksZGpSflJhIQW2suqgws9qpQdU9Qrg3RR1Ocvq1as55phj\naGh4jnHjrkdV2fHoDo555piU7Z/etYs3GxpY5cWZNgyjK4X5+S4qX4qohgm/VJvD4Q6xWNLYyH/v\n2MF74TB1bW2MLihgarfeRkJExhYU2FxHjuGnHzgruSAiAWDu4JgzcKxevZozzjiJtrYtlJQcQ9Py\nJvIK8iiZ1fOHvTcS4dqaGh466igLQ2kY/SDZL9VJKeY5ovE4tW1tTjzCYTa3tvLnPXvYHA6zORxm\nbyTCRK+HMTEUYlK3/PhQyHoeQ0xacRCR/wS+ARSJSGPSRxHgN4Nt2IGyZs0arrzyw5SWziUvL8Cu\np3cxct7IlENKX9u0iU9UVvZYKmgYxsAQyMtjclERk4uKODvF5y2xGO+Hw3zQ1sb74TDvh8O8uHdv\nR35rezujgsEeopEsJDbnMbD06j5DRH6oql/v18VF7gUuAnaoasrxHBG5A7gAaAHmq+pyEZkALARG\n48KS/kZV70hxbkr3GbFYjLKyMt5++98oLIwzbdoPWTJ3CdNvn86wM7oKwOKGBj65ejXvnnii/bgM\nI0eJxuPUt7f3EJDkfFCkp3h4vY7xoRDVBQXmv8pjQNxnqOrXRWQ4cARQmFT/sg8bFuBWOy1MY+CF\nwHRVPUJETgLuwnkajwBfVtUVIlIKLBWRF/xOhG/atIkxY8YQiy2nvPwawrVhwu+HKT+1a3c3rsq/\nbtjAD6ZONWEwjBwmkJfHRO9hnwpVZU802kM0Fjc0UNvWRm1bGzsiESqDwQ6xGB8KMSEpP96L8WEu\nSRx+JqSvBm4AJgDLcQ/vN3A7pjOiqq+IyOQMTeYB93ttF4vIMBEZ47kK3+bVN4nIu0A1SZPimViz\nZg2zZh1NQ8NrzJy5gF337mbkBSPJC3T9o9+/bRv5Inx2TO+eWQ3DyF1EhJHBICODwbSRGaPxONva\n26lta2OLJxi1bW0saWzsqNvW3s6IQKCLYIwPhZiQ1AMZV1BA4WEwN+nndflLwIeBN1T1bBE5EvjB\nAN1/HLAlqVwLjAe2Jyo8cZkDLPZ70dWrVzNzZjWBwDBCoSp2P7OKqququrRpjsX4r82beWrWLFsl\nYRiHAYG8PMYXFjK+sDBtILSY58uqNkk8trS1sXL37o5yfVsb5Z6AVBcUuKiC3Y5jCwoYHQwe1HHl\n/YhDWFVbRQQRKVTVdSIycwBt6P5k7phE8IaUHgO+pKpNqU6+6aabOvJnnXUWZ511FqtXr+b004dT\nVnYi0aYo+1/dz1EPH9XlvF/U1fGRigo+nGJlhWEYhyf5SSFkT0zTJq7KDk9Atra3U9/eTn1bG0sb\nG3mmra2jvDsaZVQwmFI4ksujgsFBf0FdtGgRixYt6tM5fiaknwSuwvUgzgH2AgFVvdDXDdyb/zOp\nJqRF5FfAIlV92CuvA85U1e2e/6b/AZ5T1Z+muXbKCelZs2bx/e/PZs6c2RSv/Dy1P63luJeO6/h8\nXyTCEW+9xSvHHceRKdZsG4ZhHCiReJzt7e1dBCRx3JpU3heNMqaggOqCgi7CUVVQwBjvWOUtEx6o\n+ZCBmpD+hJe9SUQWAeXAnw7cPACeBq4HHhaRk4F9njAI8FtgbTphSEd7e7s3IV1BWdnn2fX8Xkac\nP6JLm9tqa7lk5MjcFgZVCIehuRlaWiAWc/UiXVMgAIWFUFQEoZCrMwwj6wSThrEy0e7NhWztJiBv\nNjSwrb29I+2IRCjNz+8hGmOCwY584rNRAzCklVEcvA1vq1X1SABVXdSXi4vI74EzgUoR2QJ8Bwh6\n1/q1qj4rIheKyEagGddDATgN+CywKuENFviGqvYqSjU1NUycOJFIZBWlpcdT80INR/2+c0hpTyTC\nnXV1LJ2bhX188TjU1cHGjbBpE7z/PmzbBtu3u7RzpxOD5mZobYWCAigudikQcIKRnAAiEScira0u\nnxCK4mKoqIBhw1xKzifSyJEwahSMHu3SsGEmLoYxxBT0shIrQVyVvdFoh1hsTxKOtS0tXcp7olFG\nBAJdRSQp74eM4qCqURFZLyKTVPV9///cjvM/46PN9SnqXgX6JXtr1qxh5syJBINRYvVFRPdEuzja\nu7OujnmVlYPvWC8chpUrYelSl5Ytg3XrYMQImDbNpcmT4YQTYMwYl0aNgrKyTkHo64qIWKxTKFpa\nYP9+2LevMyXK27c7W3bvdoK0Y4dLra1QWemEIlk0Ro+G6mqXxo51x+HDTUgMYwjJS1qRdXQvox7R\neJxdkUiXnsf2SKRjdZYf/ExIjwDWiMhbuLd7AFXVeb7uMMSsW7eOqVOLKSuby54X9jD83OFInnuI\ntcRi/LyujkXHHdfLVfqBKqxeDc8/79Lrr8P06TB3rhOAa66Bo4+GwRzKys931+/vPdranFgkBCNx\n3L4d3n0X6us7UzjcKRipUkJEystNRAxjiAnk5XUEiUrFw36u4aPNt1LUZZ7FziLr1q1j7tw2yspO\nZe/zexlxYed8w4Jt2zi5vDyl47B+s3o1PPAA/O53bhjoYx+DL34RHn3UDeUcTIRCMH68S73R0gJb\nt3YVjPp611uqr+/8LBaDceNcGj++M5+cqqrcsJlhGDmDnwnpRd6Ko+mq+qKIFPs5L1usW7eOiy4S\nSouP54OX9jL99umA62bdtmULD37oQwd+k/374b77YOFC91Z9xRXwpz+5nsHhQnFx5/BYJhob3TxL\nItXWuiGtl17qrNu1yw1nZRKQcePckJthGEOCnx3S/wJcjRtemobbpHYXnfEdcoZ4PE5NTQ2VlXnw\n3hEUVO0gNM51q/64Zw9jCgo49UDe5uvr4bbbnDB87GPwox/B2Wf3fW7gcKKsDI480qV0RKNuYj4h\nHgnRWLOmq7Dk52cWj3Hj3PyI/T0M44Dx0wO4DjgReBNAVWtEZPSgWtVPamtrKS8vYdiwUppezmPY\n2Z1O9u6sq+O66ur+XXjPHrj5Zrj3Xpg/H1asgAkTBsZoww0pJYazTjopdRtV12PrLiCrVsFzz3WW\n9+51w1SZBGTcONfzMQwjLX7EoU1V2xKurr3lrTk557B+/XqmTRtFaemH2P/X/Yy50vlMqmlpYXlT\nE0/NmtXLFboRi8Hdd8N3vgOf/KSbX+ivwBgHhkjnEtxMw3dtbW6+I7nHUVcHy5d3LRcV9d4LqayE\ng9j9gWEcCH7E4a8i8l9AsYicB1wLPDO4ZvWPdevWMXlyiNKS2dS+up8Zd88A4Ff19Xy+qqpvzrLW\nr3e9hEDArT6aPXtwjDYGllDILRGePDl9G1W3jLe7gCxZAk891dkzaW52q64yCUh1tdtbYhiHGH7E\n4evAPwPvANcAzwL3DKZR/WXdunWMGxcmf9cMgmOChKpCtMRiLNy2jbf9bnpThTvvdL2Fm26Ca6+1\nt8dDDRHXK6iszCz6ra1unqn7hPrixZ0Csm2bW67b2zDWiBG2pNc4qPCzWikmIvfjvKIqsC6lQ6Mc\nYP369Vx00U6iSyZ2BPV5YtcuTigrY4qfTW9NTXD11W41zRtvwBFHDLLFRk5TVNT7iqx43O0H6d4L\nee21ruW2tsziMX6866UEg0P37zOMDPhZrXQR8CvgPa9qqohco6rPDqpl/WDdurVcc02YpkdKGX2p\nE4eF27Yxv6qqlzOBLVvgoovgwx92G9gGewe1cWiQl9e5w/3449O3a27u2QPZtAlefrmzbscON6eS\nuF4iVVX1rBs92vaGGIOKH6+s64GLVHWjV54GPKuqA+m2u18ke2VtbGxkzJhRvPzyXNouvIW5S+ey\ne7RwzNtvU3fKKRRlmm9YsQIuvhi+/GW48Ubr/hvZIRZzvZCEr61ESva/lUi7d/cUklQiUlXlXKFY\nj8RIYkC8sgINCWHweA9oOCDLBoGamhqmTKmkKHYU0dJ8CicU8tAHH/DJysrMwrB4MVxyCfziF/Cp\nTw2dwYbRnfx89zD309ONxdzmwVRCsmZN17pdu9xu/WTRGDXKpcrKznwijRhhe0UMX+KwVESeBR71\nypcBS0TkkwCq+vhgGdcXEiuV5G/TqDi9AlXl/m3b+NWMGelPevNNmDfP7V+4+OKhM9YwDpT8/M4H\nfW/EYq6n0V0wdu50veaEP61E3b59rlfSXTRSCUmiLo0PH+PgxY84FAI7cK63AXZ6dZd45ZwQh5qa\nGqqrw0SXTWLkKeUsb2qiNR7ntHQ7olevdsKwYIGbazCMQ5X8/E7vusf0iLnVk2jUbfxMFoxE2rjR\nLdZIrt+1yy3n7S4aI0e6NGJE12MibxsRcxo/q5XmD4EdB8zGjRuYPHkXrc+Nofzecn6+Ywf/OHp0\n6vB7tbVw4YVw++0mDIbRnUCgU0z8kNi93l1I9uxxPZbNm90xUU4kkZ6CkUpEuh99xiMwDgw/q5Vm\nAncCVap6tIgcC8xT1f8/6Nb1gZqaNZx55kjaNwQpObqEPyzbxSNHHdWzYXOzE4TrroPLLx96Qw3j\nUCN59/r06f7Pa2npKhiJ/J49buhr7dqudYljYWFPERk+3N0/1TGRr6iwFV59wM83dTfwNdxyVnCb\n4X4P5JQ4bNr0HtMqT6R0binvtLUQU2VOaWnXRqpuH8OcOfDv/54dQw3DcCSCWvlxEZ9A1Xn67d4T\n2bvXzZXs3AkbNnSWk48NDe5+mYQk07G4+LBayehHHIpVdXHCt5KqqohEBtesvrFnzx4ikQjDG4+k\n/ORy7tu5k78fNQrp/of8xS9c0JrXXz+s/siGccgg4nakl5fDlCl9Ozced8KSSjgSx4SwpPosFusa\ndreiwtmRfOwtX1p60Dx7/IjDThHp6CuKyD8AWwfPpL6zadMmJk4sIrZqAuUfKee/d7zH/d3jNixb\nBt/7nluhZBvcDOPwIy+v80HdH8LhzpC7DQ1unmX//q75ujo3HNa9PpEPhzvFzY+YpMqXlQ3JvIsf\ncbge+A0wU0Tqgc1ATg3Wb9y4kerqOOFFY9h6bYCWHXFOTA4MEw7DlVfCT34CU6dmz1DDMA5eCgv9\n70NJRyTiei+phCU5X1ub/vOGBjd3UlbWmcrL/ZfLy32Z6me10ibgHBEpxe2o9hedegjZsKGGqjHN\n5P9tCv8TaOATlZVdh5S+9S0XbMYmoA3DyCbBoJtIHzGi97bpUHUvvI2NTigaGztTcrmhwTmOTPWZ\nD/ysVvo34F6gEbhHROYA31DVP/f/XzewrF+/gkljK6iYO4o/7t7Nt5PdNb/1Fjz4oAsKc5CM9RmG\nYaRFxA2NFxX5X26c6hq94McX9edVtQE4Hxcq9Ergh/2zaHDYsGEdE0omkj+nhHeamzkzMaYYizmX\n27fc4jbmGIZhGL7wIw4JibkIeEBVVw+iPf1i8+YtVLdMY/X0OGcNG9YZ1Ofuu526fvaz2TXQMAzj\nIMOPOCwVkeeBC4E/iUg5EB9cs/zT0NBAc3OYig1TeXZcCxeNHOk+2LULvv1t+OUvbTjJMAyjj/gR\nh38GvgGcoKotQBC4alCt6gObNm1i3NggBS0zeDq6jwsSEz3f/z5cdhkce2x2DTQMwzgI8RUJDlia\nVN4N7B5Mo/rChg01jK2OEBk+k+pQiImFhfDBB7BwoXNdbBiGYfSZg97RyPr1yxhXFWLjpDIuGOHt\nbfjud+Gaaw5sPfIgE4vHiMR732geyAuQL/k9d3sbhmEMIge9ONTUrGR80WhemdzO5cOHw/r18NRT\nUFMzqPdtam+ivrG+S9rbupd94X3sa9vnjl5qbm+mLdZGW7St4xjXOMH8IEL6h76ixOIxYhojmBck\nmB+kIL8gZT6UH6IoWERxsJiigHcMFlEcKE5dn6KcSCXBEkoKSigOFpMnfkYeDcM41PAlDiJyHHA6\noMArqrpyUK3qA++9t4nZ1eN4aHwrd1ZUwFe/Cjfc4JxlDQD1jfUsrV/KOzveYcOeDdTsrmHD7g00\ntTcxrnwc1WXVVJdVM7Z0LCOLRlJdVs2wwmFUFFa4Y6iC0oJSQoEQofxQxzGQF/DdG4hrnEgsQiQe\noT3WnjLfFm2jNdpKS6SF1oh37Fbe37afrU1bXTnas11LpIXm9mZ3jDTTGmklFAh1EYtU+ZJg+s9S\ntvPyRcEiEx/DyFH8bIL7EnA1LqiPAA+KyN2qesdgG+eHLe9vZ/Toj3DEhHKKt22DJ590AUn6QVzj\nLN+6nOc3Pc/rta+ztH4p7bF25lbPZfaY2Zw24TTmz57PESOPYGzp2CEb6smTPCcqDG20rbjGCUfD\nNLc30xxp7hCP5khzFxFJzu9s3tlZn6Fdc3sz4WiYwkBhSuHokfchNt3zJj6G0X9EVTM3EHkHOFlV\nm71yCfCmqvoIKTW4iIgGg8KDV9zK2m9eyk133umiWN1+u+9rNLU38cS7T/DHDX/kpc0vMap4FOdN\nPY8zJp3BCdUnMLFioo33DxJxjdMaae1VRJLzHSKV6TMv3xZtoyhYlFFESgpKKA5kEKXkdt1EqihQ\nZL8N46BERFDVjD9ev3MO8TT5rFNRLrxbMZmPBoMuFvTy5b2eE4vHWPS3Rdy/8n6eXv80p086nUuP\nvJQfn/djJlRMGAKrDXA9opIC97ClZOCvH9d4j6GyVCKSnN/evJ3mvc0dPZ907VoiLbRF2zrnaTKI\nSEnQn9gk54uDxRQGCq3nY2QNP+KwAFgsIolhpU/gfC3lBFVVyiuVI/j6I4/ABRfAxIlp2za2NXL3\nsrv52eKfMbJoJJ+b/TluPf9WRpf00z+JkdPkSR6lBaWUFpT23rgfxOKxDtHJJCLJQ3FbG7f2KjzN\n7c20RlsJR8ME84IUBgqzkkL5IfLz8gfluzNyHz/7HH4iIn8FPoKbkJ6vqr2/ng8RVRXFDD+mjNCX\n73IO9lLQEmnhjsV3cNsbt3HOlHN4/FOPM7d67hBbahxq5OflUxYqoyxU1nvjfqCqROIRwtFwv1NT\nexO7Wnb1+/xAXqCrYARCFOQXdCyuSOQL8gt6lv208RZopPss3XVMtAYfPxPSD6jqFSRthEuqyzpV\noeEcVbgPSkrgpJO6fKaqPLz6Yb76wlc5dcKpvHrVq8ysnJklSw2jb4gIBfkFFOQXUB7y54N/IOku\nTq2RVtpibbTH2mmLekcf5UR+f9t+2ltStO3DNRL5PMnrVUCC+cHMS8B7WR4ezAt2uY6va/ZyXl9W\nKWYbP8NKs5ILIhIAcua1e1jRWE5/+kn4whe6+FB6f9/7XP3M1Wxv3s5jlz3GKRNOyaKVhnHwkW1x\nykQ0Hu1VUBLLvCMxb9l3inyq5eGtkdbUy8YznNNbPnHf5D1LvQlOQkyC+d4xXdlvu6SyH9KKg4j8\nJ86nUpGIJEeHiOAiw+UEUj6ZuY8+6mK/ejy65lGuf/Z6bjzlRr5yylcI5vv7MgzDODgI5AUI5AUo\nDhZn25Q+Edd4h7BlEpFIPEI0HiUS8479LLdGWnt87sczA2QQB1W9GbhZRH6oql8fqC9noAkNn0LR\nPBdjNRqPcuOfb+S5jc/x7OXPckL1Cdk2zzAMo4PEcFhB/uDHgM7EAhb02sbPhHTOCgPAqLYAfH4+\nDW0NfPqxTxOLx3j76rcZVjgs26YZhmEctBz0i6inb3+fvXM+xDkLz2FSxSSevfxZEwbDMIwDZNDE\nQUTuFZHt3g7rdG3uEJENIrLSi02dqP87EVnnffYfme4z+7jxnPPAuZwx8QzuuuguAnkHvS9BwzCM\nrJNWHERkRKbk49oLgL/LcP0LgemqegTwL8BdXn0+8Avv3KOAz4jIh9Jd55vBP3LOlHO49fxbD5ol\nYoZhGLlOptfsZbhNbwJMBPZ69cOB94EpmS6sqq+IyOQMTeYB93ttF4vIMBGp8q67UVX/BiAiDwMf\nB95NdZHgsXO45bxbTBgMwzAGkLQ9B1WdrKpTgBeAi1V1pKqOBC7y6g6UccCWpHKtV1edpj4l98y7\nx4TBMAxjgPEzQH+Kql6dKKjqcyLy4wG6/wE/1UOBm5NKZ3nJMAzD6GSRl/zjRxzqReSbwIO4h/k/\nAXV9tCwVdUCyC9TxuF5CsFv9BK8+Jao3DYAphmEYhzJnkfziLPL/ej3Dz2qlzwCjgSdwAX9Ge3UH\nytPAlQAicjKwT1W3A0uAI0RksogUAJ/22hqGYRhDRK/BfjoaipQkAv74bP974EygEtgOfAfXK0BV\nf+21SaxKagauUtVlXv0FwE+BfOC3qvqDNPdQv/YbhmEYDj/BfvxEgjsVuAcoU9UJIjIbuEZVrx04\nU/uHiYNhGEbf8SMOfoaVfop7u98FoKorcT0CwzAM4xDF1w5pVf2gW1V0EGwxDMMwcgQ/q5U+EJHT\nALwJ4htIsyHNMAzDODTw03P4InAdbiNaHTDHKxuGYRiHKH4mpEer6o5udTNVdf2gWuYDm5A2DMPo\nOwM1If2KiHzau6CIyFeAJwfCQMMwDCM38dNzGIsLCxoGxgDrgBtVtWnwzcuM9RwMwzD6zoD0HFR1\nK/Bn4FRgMnBfLgiDYRiGMXj0ulpJRF4EtgJH4/wc/VZEXlbVrw62cYZhGEZ28DPn8EtVvUJV96nq\nO7geRMMg22UYhmFkEd++lXIRm3MwDMPoOwc05yAir3nHJhFp7Jas52AYhnEIYz0HwzCMwww/PQc/\n7jMQkeG4yeiO9gn32oZhGMahh5/VSt8D5gPvAfGkj84eJJsMwzCMLONnE1wNMEtV24fGJP/YsJJh\nGEbfGSj3GWuA4QNj0uHJokWLsm2CLw4GOw8GG8HsHGjMzqHHjzjcDCwXkedF5BkvWUznPnCw/GAO\nBjsPBhvB7BxozM6hx8+E9ELgh8BqOuccbCzHMAzjEMaPODSp6h2DbolhGIaRM/iZkP4J0AY87R2B\n3FjKKiLWgzEMw+gHvU1I+xGHRaQYRlJVW8pqGIZxiHJQ75A2DMMwBgc/q5UMwzCMwwwTB8MwMUTT\naQAACnJJREFUDKMHmbyyXuYdpw6dOf4Qkb8TkXUiskFE/iPb9qRDRO4Vke0i8k62bUmHiEwQkb+I\nyBoRWS0iN2TbplSISKGILBaRFSKyVkR+kG2bMiEi+SKyXESeybYt6RCRv4nIKs/Ot7JtTypEZJiI\nPCYi73p/95OzbVN3RGSm9x0m0v4c/n/0De//+jsi8jsRCaVtm27OQUSWq+qcxHHQrO0jIpIPrAfO\nBeqAt4HPqOq7WTUsBSJyOtAELFTVY7JtTypEpAqoUtUVIlIKLAU+kaPfZ7GqtohIAHgV+Kqqvppt\nu1IhIjcCc4EyVZ2XbXtSISKbgbmquifbtqRDRO4H/qqq93p/9xJV3Z9tu9IhInm459KJqrol2/Yk\nIyKTgf8FPqSqbSLyCPCsqt6fqn2mfQ67ReQFYEqKtx/N4g/+RGCjqv4NQEQeBj4O5NzDTFVf8f4g\nOYuqbgO2efkmEXkXqCY3v88WL1sA5AM5+VATkfHAhcD3gRuzbE5vZFzOmE1EpAI4XVU/B6CqUSBn\nhcHjXGBTrgmDRwMQAYpFJAYU44QsJZnE4ULgeOBB4Fa6/oiyucRpHJD8xdcCJ2XJlkMKT8jmAIuz\na0lqvLeyZcA04C5VXZtlk9JxO/A1oDzbhvSCAi96D4pfq+rd2TaoG1OAnSKyAJiN69V+KeklIRf5\nR+B32TYiFaq6R0RuAz4AWoE/q+qL6dqnnXNQ1XZVfRM4RVX/CiwBlqjqIq+cLWzt7SDgDSk9hvvP\n15Rte1KhqnFVPQ4YD5whImdl2aQeiMjFwA5VXU4Ov5V7nOYNGV8AXOcNg+YSAdwL6p2qejzQDHw9\nuyalR0QKgEuA/862LakQkWnAvwGTcaMDpSJyebr2flYrVYnIcmAtsFZElorIrIEwtp/U4QIPJZiA\n6z0Y/UREgsAfgAdV9cls29Mb3pjzH4ETsm1LCk4F5nnj+b8HPioiC7NsU0pUdat33Ak8gRuyzSVq\ngVpVfdsrP4YTi1zlAmCp933mIicAr6vqbm+I7nHc7zUlfsThN8CNqjpRVScCX/HqssUS4AgRmewp\n9adxrj2MfiAiAvwWWKuqP822PekQkUoRGebli4DzgOXZtaonqvqfqjpBVafghhj+V1WvzLZd3RGR\nYhEp8/IlwPlATq2q8+bDtojIDK/qXFwIgVzlM7gXglxlHXCyiBR5/+/Pxb30p8SP471iVf1LoqCq\ni7wfU1ZQ1aiIXA/8GTcp+dtcXFkDICK/B84ERorIFuDbqrogy2Z15zTgs8Aqr4cI8A1V/VMWbUrF\nWOB+b94hD3hAVV/Ksk1+yNVh0DHAE+4ZQQB4SFWfz65JKflX4CHvRXATcFWW7UmJ90w8F7g627ak\nQ1VXer3YJTgP28vI8KLvx7fSk7iJoAdwY6iX45a/XTpQRhuGYRi5hZ9hpc8Do3HjU38ARnl1hmEY\nxiGKOd4zDMMwemC+lQzDMIwemDgYhmEYPTBxMAzDMHrQqzh4XjufEJGdXvqD5zvGMAzDOETx03NY\ngNtkVu2lZ7w6wxhSRCTmuURe4e3UPyXbNvUFEakQkS8mlatFpFdXCyJyjIjc20ubsxIOMkUkJCIv\net/VZRnO+UkOuswwcgQ/4jBKVReoasRL9+GWthrGUNOiqnM8/0rfAHIupoPnVjodw4FrEwVVrVfV\ntA/vJL4G3NUHM+a4y+scVc0kPnd51zaMHvgRh90icoUXvCQgIp8Fdg22YYbRCxV4LrtFZKGIfDzx\ngYg8JCLzRGS+iDwlLphRjYh8O6nNEyKyRFyAo6u9unwRuc8LhLJKRL7k1d/gBUhZ6e1674J3n6dF\n5CXgBREp8d7cl3rXSbi3/yEwzXuj/5GITBKR1d41CkVkgdd+WcKpoLhgLCcn/AuJyIki8rrX5rUk\n1xIJW0bhPCl/2LvPVBH5loi85f27fp1oq6obgMkJtySG0QVVzZhwHvyeAXZ66SlgYm/nWbI00AmI\n4vwpvQvsA+Z49WcAT3j5CuA93IvPfKAe98ZeiPMdNNdrN9w7Fnn1I3DBeZ5Pul+5d6wDgsl13eya\nj3MjP8wr5+OC/ABUAhu8/CTgnaTzJifKOJ9l93j5mcD7QAg4GXgm6ZwyIN/Lnws85uXPSrTDuWxJ\nPmd4Un4hcHFS+X7ggmz/bS3lXurVt5K6oDqX9NbOMIaAVvWiEooLF/kAMEtVXxaRO0WkEvgH3AMz\n7vkNel5V93rnPA58BC8ugIh8wrvuBGA6UANMFZE7cF5fE76GVgG/81zJpPJaq9599nnlPOAH3nh+\nHKgWkdFkduF9GnAHgKquF5H3gRk4Qdma1G4YsFBEpnv3Daa4Vvf7fFREvoYL7jIC57zuf7zP6nEi\nZRhdSCsOIvIfqvojEfl5io9VVXMyRqpxeKCqb3qeWitVdRfujfgKnJfe+WlOE0C9IZtzcMM1YRH5\nC1CoqvtEZDbwMeALwKeAfwYuwvVOLgH+S0SOUdVYt2snB6C5HNdjOF5VY+Lcdxf6+Gd1f6irl5Lr\nvwe8pKqXisgkYFHGC4oUAr/E9ZjqROQ73WwRctc5oJFFMvUcEq5cl9L1x2M/JiPriMiRuOGb3V7V\nfbh44vWqui6p6XkiMhwI48LJXoULFrTXE4YjcUM3iMhIIKKqj4tIDfCA59p4ojpvxK/h3HCX4EIu\ndpjTzbxyXMCfmIicjXv7B2jEDQul4hWcqPzFm0eYiIuVXgJUdbt2vZf346E0IQS7xQV0ugx4NOnz\nsfQiMMbhSVpxUNVE3OgWVU3+MSEinxpUqwwjNUVJbsUFuFJVFUBVd4jIWlzQmgQKvIVzGDke5+Z7\nmTcJ/AWv/XrgDa/9OGCBOLfg4KKO5eNEosK7589UNVkYEvdJfmF6CHhGRFbh3CO/69m425tEfgd4\nFrgz6bw7gbu8c6LA51Q1IiIrcXMQCW7BuS7/Jm7oK/m+mnRMfC/7RORuYDUuVnj3ELBzABsFMHrg\nx2X38sQ4b6Y6w8gmIlKMmxuYo6qNXt183HDKv2bTtgNFRO7Dxcwe0NjeXg/lVlWd12tj47Aj05zD\nBcCFwDhvgi7RdS4DIkNgm2H4QkTOBe4BfpIQBo/ub/QHK7fiVjMNqDjg5lVuGeBrGocIaXsO3sTc\nHOC7wLfoFIcG4C+JFSCGYRjGoYefYaUCVW0fInsMwzCMHMBPDOnJInIzcBRuwxC4paxTB88swzAM\nI5v4dbz3K9wKirNwOyofGkSbDMMwjCzjZ1hpmaoeLyLvqOoxyXVDYqFhGIYx5PgZVgqLSD6wUUSu\nx23AKRlcswzDMIxs4qfncCJuE88w3Nb9cuAWVX1z8M0zDMMwskGv4tDjBOdO4FOq+sjgmGQYhmFk\nm7QT0iJSKiJf8bxdXisieSJyKc6j4+VDZ6JhGIYx1GTaBPc4bsPbG8D5OLfGYeAGVV0xZBYahmEY\nQ04mcVilqsd6+XycT/lJqto6hPYZhmEYWSDTPocOf/We7/o6EwbDMIzDg0w9hxhdA5gUAQlxUFUt\nH2TbDMMwjCzR59VKhmEYxqGPH/cZhmEYxmGGiYNhGIbRAxMHwzAMowcmDoZhGEYPTBwMwzCMHvwf\nfa03Dd2v3dkAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5d36110>"
       ]
      }
     ],
     "prompt_number": 5
    }
   ],
   "metadata": {}
  }
 ]
}