{ "metadata": { "name": "", "signature": "sha256:536811726eaa1bb9fb1bda7ecc2bf03cb448a0f462ad6a5e6e108c2ac4b98f4a" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter11-Chemical Rocket and Hypersonic Propulsion" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg644" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calcualte Diameter of the SSME nozzle exit area\n", "print(\"Example 11.1\")\n", "\n", "Ts=470000. ##in lb\n", "Tv=375000. ##in lb\n", "A2=(Ts-Tv)/(14.7*144.)\n", "D=(4.*A2/math.pi)**(1./2.)\n", "print'%s %.1f %s'%(\"Diameter of the SSME nozzle exit area :\",D,\"\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 11.1\n", "Diameter of the SSME nozzle exit area : 7.6 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg644" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "print(\"Example 11.2\")\n", "#calculate rocket thurst and effective thurst\n", "m=1000 ##in kg/s\n", "g=9.8 ##m/s**2\n", "Is=340. ##in s\n", "F=m*g*Is\n", "print'%s %.1f %s'%(\"(a)Rocket thrust F in N :\",F,\"\")\n", "c=F/m\n", "print'%s %.1f %s'%(\"(b)Effective exhaust velocity c in m/s :\",c,\"\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 11.2\n", "(a)Rocket thrust F in N : 3332000.0 \n", "(b)Effective exhaust velocity c in m/s : 3332.0 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Ex3-pg646" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "print(\"Example 11.3\")\n", "#calculate optimum thurst and nozzle exit mach number and nozzle area exapnsion\n", "pc=200. ##in atm\n", "p2=1. ##in atm\n", "gm=1.3\n", "Ath=25. ##in m**2\n", "Cf=((2.*gm**2.)/(gm-1.)*(2./(gm+1.))**((gm+1.)/(gm-1.))*(1.-(p2/pc)**((gm-1.)/gm)))**(1/2.)\n", "print'%s %.1f %s'%(\"(a)Optimum thrust coefficient Cf,opt :\",Cf,\"\")\n", "pc=200.*101. ##converting to MPa\n", "F=Ath*Cf*pc\n", "print'%s %.1f %s'%(\"(b)thrust F in N\",F,\"\")\n", "pc=200.\n", "M2=((2./(gm-1.))*((pc/p2)**((gm-1.)/gm)-1.))**(1/2.)\n", "print'%s %.1f %s'%(\"(c)Nozzle exit Mach no. M2 :\",M2,\"\")\n", "A=1./M2*(2./(gm+1)*(1+(gm-1.)/2.*M2**2.))**((gm+1.)/(2.*(gm-1.)))\n", "print'%s %.1f %s'%(\"(d)Nozzle area expansion ratio A2/Ath :\",A,\"\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 11.3\n", "(a)Optimum thrust coefficient Cf,opt : 1.7 \n", "(b)thrust F in N 833262.4 \n", "(c)Nozzle exit Mach no. M2 : 4.0 \n", "(d)Nozzle area expansion ratio A2/Ath : 15.9 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg648" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "print(\"Example 11.4\")\n", "#estimate combustion gas constant and moleculare weight \n", "Tc=2999 ##in K\n", "Ccr=2432 ##in m/s\n", "gm=1.26\n", "f=4.02\n", "R=((Ccr*gm*(2./(gm+1))**((gm+1.)/(2.*(gm-1))))**2.)/(gm*Tc)\n", "print'%s %.1f %s'%(\"Combustion gas constant R in J/kg.K:\",R,\"\")\n", "RU=8314.6 ##in j/kmol.K\n", "MW=RU/R\n", "print'%s %.1f %s'%(\"Molecular weight of the mixture in kg/kmol :\",MW,\"\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 11.4\n", "Combustion gas constant R in J/kg.K: 858.9 \n", "Molecular weight of the mixture in kg/kmol : 9.7 \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg648" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calcualte The oxidizer-to-fuel mixture ratio and The molecular weight of the mixture of gases in the product of combustion in kg/kmol\n", "import math\n", "print(\"Example 11.5\")\n", "\n", "f=4.\n", "MW=(2.*18+2*2)/4. ##from equation\n", "print'%s %.1f %s'%(\"(a)The oxidizer-to-fuel mixture ratio :\",f,\"\")\n", "print'%s %.1f %s'%(\"(b)The molecular weight of the mixture of gases in the product of combustion in kg/kmol:\",MW,\"\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 11.5\n", "(a)The oxidizer-to-fuel mixture ratio : 4.0 \n", "(b)The molecular weight of the mixture of gases in the product of combustion in kg/kmol: 10.0 \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg651" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "print(\"Example 11.6\")\n", "#calculate imporvement in Delv\n", "g=9.8 ##in m/s**2\n", "Is=400. ##in s\n", "\n", "delv1=g*Is*math.log(1./0.1) ##for pmf=0.9\n", "delv2=g*Is*math.log(1./0.05) ##for pmf=0.95\n", "delp=(delv2-delv1)/delv1*100.\n", "print'%s %.1f %s'%(\"% improvement in delv :\",delp,\"\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 11.6\n", "% improvement in delv : 30.1 \n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg653" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calcualte reduction in terminal speed\n", "print(\"Example 11.7\")\n", "\n", "g=9.8 ##in m/s**2\n", "Is=420. ##in s\n", "the=90. ##in degree\n", "tb=30. ##in s\n", "gavg=9.65 ##in m/s**2\n", "MR=0.1\n", "delv1=-g*Is*math.log(MR) ##in m/s\n", "delv2=-g*Is*math.log(MR)-gavg*tb\n", "delp=abs(delv2-delv1)/delv1*100\n", "print'%s %.1f %s'%(\"% reduction in terminal speed :\",delp,\"\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 11.7\n", "% reduction in terminal speed : 3.1 \n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg656" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "print(\"Example 11.8\")\n", "#calculate Terminal speed of rocket vehical excluding gravitatinal effect in m/s\n", "mf=0.8\n", "g=9.8 ##in m/s**2\n", "Is=345. ##in s\n", "delvt=-g*Is*math.log(1-mf)\n", "m=500000. ##in kg\n", "q0=100000. ##in Pa\n", "tb=60. ##in s\n", "Af=20.##in m**2\n", "Cd=0.3 ##mean drag coefficient\n", "delvd=math.log(1-mf)*(Af/m)*q0*(tb/(1-mf))*Cd\n", "delv=delvt+delvd\n", "print'%s %.1f %s'%(\"Terminal speed of rocket vehical excluding gravitatinal effect in m/s :\",delv,\"\")\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 11.8\n", "Terminal speed of rocket vehical excluding gravitatinal effect in m/s : 4862.1 \n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg660" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calcualte Effective exhaust speed and propulsive efficiency and Overall efficiency\n", "print(\"Example 11.9\")\n", "g=9.8 ##in m/s**2\n", "Is=421. ##in s\n", "Qr=120000000.\n", "v=5000. ##in m/s\n", "c=g*Is\n", "print'%s %.1f %s'%(\"(a)Effective exhaust speed c in m/s :\",c,\"\")\n", "ep=2.*(v/c)/(1.+(v/c)**2.)\n", "print'%s %.1f %s'%(\"(b)propulsive efficiency :\",ep,\"\")\n", "eo=c*v/Qr\n", "print'%s %.1f %s'%(\"(c)Overall efficiency :\",eo,\"\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 11.9\n", "(a)Effective exhaust speed c in m/s : 4125.8 \n", "(b)propulsive efficiency : 1.0 \n", "(c)Overall efficiency : 0.2 \n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex11-pg671" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "print(\"Example 11.11\")\n", " #calcualte the new chamber pressure and burning rate and the corresponding reduction in burn time\n", "p=7. ##in MPa, \n", "n=0.5 ##and \n", "a=5. ##cm/s \n", "Tdg=15. ##in degree C\n", "Td=15+273 ##in K\n", "br=0.002 ##per degree C\n", "pk=0.004 ##per degree C\n", "t=60.##s, \n", "\n", "DT=30. ## temp difference in degree C\n", "pc=p*(1.+pk*DT)\n", "print'%s %.1f %s'%(\"(a)The new chamber pressure when the initial grain temp. is 45 degree C in MPa\",pc,\"\")\n", "r=a*(pc/p)**n\n", "r=r*(1+br*DT) ##correcting for the effect of the grain temperature on burning rate.\n", "print'%s %.1f %s'%(\"Burning rate when grain temp. is 45 degree C\",r,\"\")\n", "L=a*t/100.\n", "tb=L*100./r ##time to burn 3m of end burning grain at 5.61cm/s\n", "tbn=t*(p/pc) ##burn time for a constant total impulse\n", "\n", "dt=t-tb\n", "print'%s %.1f %s'%(\"(b)The corresponding reduction in burn time in seconds:\",dt,\"\")\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 11.11\n", "(a)The new chamber pressure when the initial grain temp. is 45 degree C in MPa 7.8 \n", "Burning rate when grain temp. is 45 degree C 5.6 \n", "(b)The corresponding reduction in burn time in seconds: 6.5 \n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex12-pg678" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate heat flux and total heat flux and convection heat flux and wall temperature on the gas side \n", "print(\"Example 11.12\")\n", "Tg=2750. ##in K\n", "Ttg=Tg\n", "Tc=300. ## coolant bulk temp. in K\n", "tw=0.002 ##Wall thickness in m\n", "kw=43. ##thermal conductivity of the wall in W/m.C\n", "hg=657. ##Gas side film coefficient in W/m**2K\n", "hc=26000. ##Coolant side film coefficient in W/m**2K\n", "eg=0.05 ##emissivity of the gas \n", "sigma=5.67*10**(-8)##in W/m**2K\n", "Taw=Ttg\n", "\n", "rhf=eg*sigma*Tg**4/1000.\n", "print'%s %.1f %s'%(\"(a)The radiation heat flux in kW/m**2 :\",rhf,\"\")\n", "qw=(Ttg-Tc+(rhf*1000./hg))/((1./hg)+(tw/kw)+(1./hc))/1000.\n", "print'%s %.1f %s'%(\"(b)The total heat flux in kW/m**2:\",qw,\"\")\n", "qc=qw-rhf\n", "print'%s %.1f %s'%(\"(c)The convection heat in kW/m**2:\",qc,\"\")\n", "Twg=Taw-qc*1000./hg\n", "print'%s %.1f %s'%(\"(d)Wall temp. on the gas side in K:\",Twg,\"\")\n", "Twc=Tc+(qw*1000./hc)\n", "print'%s %.1f %s'%(\"(e)Wall temp. on the coolant side in K:\",Twc,\"\")\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 11.12\n", "(a)The radiation heat flux in kW/m**2 : 162.1 \n", "(b)The total heat flux in kW/m**2: 1678.1 \n", "(c)The convection heat in kW/m**2: 1516.0 \n", "(d)Wall temp. on the gas side in K: 442.6 \n", "(e)Wall temp. on the coolant side in K: 364.5 \n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Ex13-pg690" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate ratio of specific impulse\n", "print(\"Example 11.13\")\n", "\n", "Cpg=2006. ##in J/kg.K\n", "Cs=903. ##J/kg.K\n", "X1=0.18\n", "X2=0.16\n", "Tr=1.057\n", "Ir=(((1.-X1)*Cpg+X1*Cs)*Tr/((1.-X2)*Cpg+X2*Cs))**(1/2.) ##Ratio of specific impulse \n", "print'%s %.3f %s'%(\"Raio of specific impulse :\",Ir,\"\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 11.13\n", "Raio of specific impulse : 1.022 \n" ] } ], "prompt_number": 14 } ], "metadata": {} } ] }