{ "metadata": { "name": "", "signature": "sha256:25ad1e2d44436c7f3601ad03c17827fcc9d4a9726e4cce4d60e192c21e28061e" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter6-Combustion Chambers and After burners" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg309" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#determine number of mole of hydrogen and oxygen\n", "nH2=12/2. ##molecular mass og hydrogen =2kg/kmol\n", "nO2=8/32. ##Molecular mass of O2=32kg/kmol\n", "print'%s %.f %s'%(\"No. of kilomoles of H2\",nH2,\"\")\n", "print'%s %.2f %s'%(\"No. of kilomoles of O2\",nO2,\"\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "No. of kilomoles of H2 6 \n", "No. of kilomoles of O2 0.25 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Ex3-pg317" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate lower and higher heating values of hydrogen\n", "T=298.16 ##in K\n", "dhf=-241827. ##heat of formation of H2O(g in kJ.\n", "n=1 ##kmol\n", "Qr=n*dhf ##kJ/kmol\n", "LHV=(-1.)*Qr/2.\n", "print'%s %.1f %s'%(\"LHV in\",LHV,\"kJ/kg\")\n", "HHV=LHV+9*2443\n", "print'%s %.1f %s'%(\"HHV in \",HHV,\"kJ/kg\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "LHV in 120913.5 kJ/kg\n", "HHV in 142900.5 kJ/kg\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Ex5-pg320" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calcualte the ratio Nh2/no2 of the reactants and fuel oxdizer and adiabatic flame temperature\n", "##from equation CH4+2.4(O2+3.76N2)-->CO2+2H2O+0.4O2+9.02N2\n", "f=(12+4.)/(2.4*(32.+3.76*28.)) ##fuel to air ratio based on mass.\n", "fs=(12+4.)/(2.*(32.+3.76*28.)) ##fuel to air ratio based on stoichometric condition.\n", "feq=f/fs\n", "print'%s %.7f %s'%(\"fuel to air ratio based on mass\",f,\"\")\n", "print'%s %.7f %s'%(\"fuel to air ratio based on stoichometric condition\",fs,\"\")\n", "print'%s %.7f %s'%(\"Equivalent ratio\",feq,\"\")\n", "dH=-802303 ##kJ\n", "dC=484.7 ##kJ\n", "Dt=(-1)*dH/dC ##Dt=T2-Tf\n", "Tf=25+273\n", "T2=Dt+Tf\n", "print'%s %.4f %s'%(\"The diabatic flame temperature in\",T2,\" K\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "fuel to air ratio based on mass 0.0485625 \n", "fuel to air ratio based on stoichometric condition 0.0582751 \n", "Equivalent ratio 0.8333333 \n", "The diabatic flame temperature in 1953.2569 K\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg323" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate mole fraction of N2 at equlibrium when pm is 1 atm and 10 atms\n", "print(\"Example 6.6\")\n", "Kp=0.1\n", "x=poly(0,\"x\")\n", "pm=1\n", "y=4*(x)^2*pm-Kp+Kp*(x)^2\n", "d=roots(y)\n", "for i=1:1:2\n", "\n", "if real(d(i))>0 then\n", " print(d(i),\"(a)Mole fraction of N2 at equilibrium when pm is 1 atm:\")\n", "end\n", "end\n", "//part (b)\n", "Kp=0.1\n", "x=poly(0,\"x\")\n", "pm=10\n", "y=4*(x)^2*pm-Kp+Kp*(x)^2\n", "d=roots(y)\n", "for i=1:1:2\n", "\n", "if real(d(i))>0 then\n", " print(d(i),\"(b)Mole fraction of N2 at equilibrium when pm is 10 atm:\")\n", "end\n", "end\n" ], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }