{ "metadata": { "name": "", "signature": "sha256:4defd5409de6787753d9afa80f45fd44de9564eee21481b5ef4ed48087f19bda" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter5-Bending of Beams" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg128" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate meter and sigma \n", "Mz=11000. ##Nm\n", "A1=0.13*0.02 ##m\n", "A2=0.15*0.02 ##m\n", "z1=0.01 ##m\n", "z2=0.075 ##m\n", "yA=0.043 ##m\n", "zA=-0.106 ##m\n", "yB=-0.063 ##m\n", "zB=0.\n", "\n", "##location of the centroid\n", "z=(A1*z1+A2*z2)/(A1+A2)\n", "print'%s %.2f %s'%(\"in meter is= \",z,\"\")\n", "\n", "Iz=(0.02*(0.13)**3)/12.+ (0.13*0.02*(0.04)**2)+(0.15*(0.02)**3.)/12.+ (0.15*0.02*(0.035)**2.)\n", "print'%s %.5f %s'%(\"Iz in meter^4 is= \",Iz,\"\")\n", "Iy=(0.02*(0.13)**3)/12.+ (0.13*0.02*(0.04)**2)+(0.15*(0.02)**3)/.12+ (0.15*0.02*(0.035)**2.)\n", "print'%s %.5f %s'%(\"Iy in meter^4 is= \",Iy,\"\")\n", "Iyz=0+A1*0.04*(-0.035)+0+A2*(-0.035)*0.03\n", "print'%s %.2f %s'%(\"Iyz in meter^4 is= \",Iyz,\"\")\n", "##thetap=(atand((-2*Iyz)/(Iz-Iy)))/2\n", "##print'%s %.2f %s'%(thetap)\n", "I1=(Iz+math.sqrt(0.+(6.79*10**-6)**2.))\n", "print'%s %.5f %s'%(\"I1 in meter^4 is= \",I1,\"\")\n", "I2=(Iz-math.sqrt(0+(6.79*10**-6)**2))\n", "print'%s %.6f %s'%(\"I2 in meter^4 is= \",I2,\"\")\n", "My1=11000.*math.sin(45/57.3)\n", "print'%s %.2f %s'%(\"My1 in Nm is\",My1,\"\")\n", "Mz1=11000*math.sin(45/57.3)\n", "print'%s %.2f %s'%(\"Mz1 in Nm is\",Mz1,\"\")\n", "\n", "sigmaxA=((My1*(zA))/I1)-((Mz1*yA)/I2)\n", "print'%s %.2f %s'%(\"sigmaxA in MPa is\",sigmaxA,\"\")\n", "sigmaxB=0-((My1*yB)/I2)\n", "print'%s %.2f %s'%(\"sigmaxB in MPa is\",sigmaxB,\"\")\n", "\n", "My=0.\n", "y=((Mz*Iyz)*z)/(Mz*Iy) ##.......equal to z=-1.71y\n", "print'%s %.3f %s'%(\"y\",y,\"\")\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "in meter is= 0.04 \n", "Iz in meter^4 is= 0.00001 \n", "Iy in meter^4 is= 0.00002 \n", "Iyz in meter^4 is= -0.00 \n", "I1 in meter^4 is= 0.00002 \n", "I2 in meter^4 is= 0.000005 \n", "My1 in Nm is 7777.72 \n", "Mz1 in Nm is 7777.72 \n", "sigmaxA in MPa is -114417761.50 \n", "sigmaxB in MPa is 101941050.82 \n", "y -0.014 \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-144" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate the distance \n", "import scipy\n", "from scipy import integrate\n", "t=1.25 ##mm\n", "y=15.87 ##mm\n", "z=5.28 ##mm\n", "Iy=4765.62 ##mm**4\n", "Iz=21054.69 ##mm**4\n", "Iyz=3984.37 ##mm**4\n", "thetap=13.05 ##degree\n", "Iy1=3828.12 ##mm**4\n", "Iz1=21953.12##mm**4\n", "s=12.5\n", "\n", "##tau=(Vy/Iz1*t)*s*t(19.55+s*asind(13.05)/2)....equation 1\n", "##F1=integrate((tau*t)ds)\n", "def fun(s):\n", "\ty=(0)\n", "\treturn y\n", "x=scipy.integrate.quad(fun,0,1)\n", "x=x[0]\n", "##F1=0.0912*Vy1 substituting the value of tau we get F1\n", "##Vy1*ez1=37.5*F1 substituting the value of F1 we get ez1\n", "ez1=37.5*0.0912\n", "print'%s %.2f %s'%(\"the distance in mm is= \",ez1,\"\")\n", "\n", "##tau=(Vz1/Iy1*t)*s*t(12.05-s*asind(13.05)/2)....equation 2\n", "##F1=integrate((tau*t)ds)\n", "def fun(s):\n", "\ty=(0)\n", "\treturn y\n", "x=scipy.integrate.quad(fun,0,1)\n", "x=x[0]\n", "\n", "##F1=0.204*Vz1 substituting the value of tau we get F1\n", "##Vz1*ey1=37.5*F1 substituting the value of F1 we get ez1\n", "ey1=37.5*0.204\n", "print'%s %.2f %s'%(\"the distance in mm is= \",ey1,\"\")\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the distance in mm is= 3.42 \n", "the distance in mm is= 7.65 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg154" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate stress and meter\n", "import scipy\n", "from scipy import integrate\n", "P=70. ##kN\n", "c=0.05##m\n", "c1=c\n", "c2=c\n", "R=0.1+0.05\n", "A=0.005\n", "\n", "##m=(-1/(2*c))*integrate((y/R+y)dy)\n", "def fun(c):\n", "\ty=(-c)\n", "\treturn y\n", "\n", "x=scipy.integrate.quad(fun,0,1)\n", "m=-1.+(R/2.*c)*math.log((R+c)/(R-c))\n", "print'%s %.2f %s'%(\"m\",m,\"\")\n", "##m=(-1/(2*c))*integrate((y/R)-(y**2/R**2)+(y**3/R**3)-(y**4/R**4)+.....)dy)\n", "m=-1+(3/2.)*math.log(2.)\n", "print'%s %.3f %s'%(\"m\",m,\"\")\n", "\n", "M=P*R\n", "print'%s %.2f %s'%(\"M\",M,\"\")\n", "sigmatheta1=(-P*c2)/(m*A*(R-c1))\n", "print'%s %.2f %s'%(\"stress in Pa is= \",sigmatheta1,\"\")\n", "sigmatheta2=(P*c2)/(m*A*(R+c2))\n", "print'%s %.2f %s'%(\"stress in Pa is= \",sigmatheta2,\"\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "m -1.00 \n", "m 0.040 \n", "M 10.50 \n", "stress in Pa is= -176230.22 \n", "stress in Pa is= 88115.11 \n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }