{ "metadata": { "name": "", "signature": "sha256:76379bde89e3a33a0904d639103a0d51711eca282502a3d06dfa062f7d30798f" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter1-Analysis of stress" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-page13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Mohr's circle\n", "#calculate centre of circle and max and min stress and principal stress and maxi shearing stress\n", "import numpy\n", "from numpy.linalg import inv\n", "import math\n", "sigma=((40+80)/2.)\n", "print'%s %.2f %s'%(\"center of the circle in MPa = \",sigma,\"\")\n", "\n", "##solution a\n", "x=((80-40)**2.);\n", "y=30**2.;\n", "sigma1=60.+math.sqrt((.25*x)+y)\n", "print'%s %.2f %s'%(\"maxi pricipal stress in MPa = \",sigma1,\"\");## print'%s %.2f %s'%laying result\n", "sigma2=60.-math.sqrt((.25*x)+y)\n", "print'%s %.2f %s'%(\"mini pricipal stress in MPa = \",sigma2,\"\");## print'%s %.2f %s'%laying result\n", "theta1=((math.atan((30./20.))/2)*57.3)\n", "print'%s %.2f %s'%(\"pricipal stresses in degree\",theta1,\"\");## print'%s %.2f %s'%laying result\n", "theta2=(((math.atan(30/20.))+180.)/2.)*57.3\n", "print'%s %.2f %s'%(\"pricipal stresses in degree\",theta2,\"\");## print'%s %.2f %s'%laying result\n", "\n", "##solution b\n", "tau=math.sqrt((.25*x)+y)\n", "print'%s %.2f %s'%(\"maxi shearing stress in MPa = \",tau,\"\");## print'%s %.2f %s'%laying result\n", "theta3=theta1+45.\n", "print'%s %.2f %s'%(\"stress in MPa = \",theta3,\"\");## print'%s %.2f %s'%laying result\n", "theta4=theta2+45\n", "print'%s %.2f %s'%(\"stress in MPa = \",theta4,\"\");## print'%s %.2f %s'%laying result\n", "\n", "##final solution in matrix form\n", "p=([80 ,30, 30 ,40])\n", "print(p) \n", "q=([sigma1, 0 ,0 ,sigma2])\n", "print(q)\n", "r=([sigma, -tau, -tau, sigma])\n", "print(r)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "center of the circle in MPa = 60.00 \n", "maxi pricipal stress in MPa = 96.06 \n", "mini pricipal stress in MPa = 23.94 \n", "pricipal stresses in degree 28.16 \n", "pricipal stresses in degree 5185.16 \n", "maxi shearing stress in MPa = 36.06 \n", "stress in MPa = 73.16 \n", "stress in MPa = 5230.16 \n", "[80, 30, 30, 40]\n", "[96.05551275463989, 0, 0, 23.944487245360108]\n", "[60.0, -36.05551275463989, -36.05551275463989, 60.0]\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg14" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Mohr's circle\n", "#calculate circle and radius of circle and oriention of the stresses in MPA\n", "import math\n", "radius=((14+28)/2.)\n", "print'%s %.2f %s'%(\"radius of the circle in degree = \",radius,\"\")\n", "sigma1=(7+radius *math.cos(60/57.3))\n", "print'%s %.2f %s'%(\" the circle in MPa = \",sigma1,\"\")\n", "sigma2=(7-radius *math.cos(60/57.3))\n", "print'%s %.2f %s'%(\" the circle in MPa = \",sigma2,\"\")\n", "tau1=radius*math.sin(60./57.3)\n", "print'%s %.2f %s'%(\" orientation of the stresses in MPa = \",tau1,\"\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "radius of the circle in degree = 21.00 \n", " the circle in MPa = 17.50 \n", " the circle in MPa = -3.50 \n", " orientation of the stresses in MPa = 18.19 \n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }