{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 6:Cathode ray oscilloscope" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 6.1" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "amplitude of voltage after 10 ms=4.76 V\n" ] } ], "source": [ "# 6.1\n", "import math\n", "Vcc=50;\n", "t=10*10**-3;\n", "R=500*10**3;\n", "C=0.2*10**-6;\n", "tc=R*C;\n", "Vo=Vcc*(1-math.exp(-t/tc));\n", "print (\"amplitude of voltage after 10 ms=%.2f V\" %Vo)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 6.2" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "voltage across the capacitor after 50 microsecond=1.36 V\n" ] } ], "source": [ "# 6.2\n", "import math\n", "Vcc=4.76;\n", "t=50*10**-6;\n", "R=0.2*10**3;\n", "C=0.2*10**-6;\n", "tc=R*C;\n", "Vo=Vcc*(math.exp(-t/tc));\n", "print (\"voltage across the capacitor after 50 microsecond=%.2f V\" %Vo)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 6.3" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Rise time=0.03 us\n" ] } ], "source": [ "# 6.3\n", "import math\n", "BW=10*10**6;\n", "tr=0.35/BW*10**6;\n", "print (\"Rise time=%.2f us\" %tr)\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 6.4" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Attenuation factor=10.0 \n" ] } ], "source": [ "# 6.4\n", "import math\n", "R=(9.0*10**3)+(900+90+10);\n", "Rt=100*10**3;\n", "Attenuation=R/Rt;\n", "Attenuation_factor=1/Attenuation;\n", "print (\"Attenuation factor=%.1f \" %Attenuation_factor)\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 6.5" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Attenuation factor=11.0 \n" ] } ], "source": [ "# 6.5\n", "import math\n", "R=10.0*10**3;\n", "Ri=100*10**3;\n", "Rt=100*10**3;\n", "Rp=(Ri*R)/(Ri+R);\n", "Attenuation=Rp/Rt;\n", "Attenuation_factor=1/Attenuation;\n", "print (\"Attenuation factor=%.1f \" %Attenuation_factor)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 6.6" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "For point A Attenuation_factor=400\n", "voltage per division value at point A=20.00\n", "For point B Attenuation_factor=100\n", "voltage per division value at point B=5.00\n", "For point C Attenuation_factor=40\n", "voltage per division value at point C=2.00\n", "For point D Attenuation_factor=10\n", "voltage per division value at point D=0.50\n", "For point E Attenuation_factor=4\n", "voltage per division value at point E=0.20\n", "For point F Attenuation_factor=1\n", "voltage per division value at point F=0.05\n" ] } ], "source": [ "# 6.6\n", "import math\n", "Vo=50*10**-3;\n", "print ('For point A Attenuation_factor=400')\n", "Attenuation_factor=400;\n", "Vi=Attenuation_factor*Vo;\n", "print (\"voltage per division value at point A=%.2f\" %Vi)\n", "print ('For point B Attenuation_factor=100')\n", "Attenuation_factor=100;\n", "Vi=Attenuation_factor*Vo;\n", "print (\"voltage per division value at point B=%.2f\" %Vi)\n", "print ('For point C Attenuation_factor=40')\n", "Attenuation_factor=40;\n", "Vi=Attenuation_factor*Vo;\n", "print (\"voltage per division value at point C=%.2f\" %Vi)\n", "print ('For point D Attenuation_factor=10')\n", "Attenuation_factor=10;\n", "Vi=Attenuation_factor*Vo;\n", "print (\"voltage per division value at point D=%.2f\" %Vi)\n", "print ('For point E Attenuation_factor=4')\n", "Attenuation_factor=4;\n", "Vi=Attenuation_factor*Vo;\n", "print (\"voltage per division value at point E=%.2f\" %Vi)\n", "print ('For point F Attenuation_factor=1')\n", "Attenuation_factor=1;\n", "Vi=Attenuation_factor*Vo;\n", "print (\"voltage per division value at point F=%.2f\" %Vi)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 6.7" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Attenuationn for dc=10.0\n", "Attenuationn for ac=3.0\n", "Therefore the attenuation with ac is different from that of dc\n" ] } ], "source": [ "#6.7\n", "import math\n", "R2=100*10**3;\n", "Vi=1.0;\n", "R1=900*10**3;\n", "Vo_dc=Vi*R2/(R1+R2);\n", "k_dc=1/Vo_dc;\n", "print (\"Attenuationn for dc=%.1f\" % k_dc)\n", "XC2=1592.0;\n", "Vi=1;\n", "XC1=3183;\n", "Vo_ac=Vi*XC2/(XC1+XC2);\n", "k_ac=1/Vo_ac;\n", "print (\"Attenuationn for ac=%.1f\" % k_ac)\n", "print ('Therefore the attenuation with ac is different from that of dc')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 6.8" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "maximum velocity of the beam of electrons=16772557.39 m/s\n" ] } ], "source": [ "# 6.8\n", "import math\n", "e=1.6*10**-19;\n", "Ea=800;\n", "m=9.1*10**-31;\n", "Vox=(2*e*Ea/m)**0.5;\n", "print (\"maximum velocity of the beam of electrons=%.2f m/s\" %Vox)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 6.9" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "maximum velocity of the beam of electrons=26519741.77 m/s\n", "deflection sensitivity=0.38 mm/V\n", "Deflection Factor=2.67 V/mm\n" ] } ], "source": [ "# 6.9\n", "import math\n", "e=1.6*10**-19;\n", "Ea=2000;\n", "m=9.1*10**-31;\n", "Vox=(2*e*Ea/m)**0.5;\n", "print (\"maximum velocity of the beam of electrons=%.2f m/s\" %Vox)\n", "L=5;\n", "ld=1.5*10**-2;\n", "d=5*10**-3;\n", "S=(L*ld/2*d*Ea);\n", "print (\"deflection sensitivity=%.2f mm/V\" %S)\n", "G=1/S;\n", "print (\"Deflection Factor=%.2f V/mm\" %G)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 6.10" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Input voltage required for deflection of 3mm =1.0 V\n" ] } ], "source": [ "# 6.10\n", "import math\n", "Ea=2000;\n", "L=0.3;\n", "ld=2*10**-2;\n", "d=5*10**-3;\n", "D=3*10**-2;\n", "Ed=(2*d*Ea*D)/(L*ld);\n", "gain=100;\n", "V_require=Ed/gain;\n", "print (\"Input voltage required for deflection of 3mm =%.1f V\" %V_require)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 6.11" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "maximum velocity of the beam of electrons=26519741.77 m/s\n", "Cutt off frequency=132.60 MHz\n" ] } ], "source": [ "# 6.11\n", "import math\n", "e=1.6*10**-19;\n", "Ea=2000;\n", "m=9.1*10**-31;\n", "Vox=(2*e*Ea/m)**0.5;\n", "print (\"maximum velocity of the beam of electrons=%.2f m/s\" %Vox)\n", "l=50*10**-3;\n", "fc=Vox/(4*l)*10**-6;\n", "print (\"Cutt off frequency=%.2f MHz\" %fc)\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }