{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 2:Primary sensing elements and transducers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 2.1" ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Displacement of the free end = 0.02 m\n" ] } ], "source": [ "# 2.1\n", "import math;\n", "t=0.35;\n", "P=1500*10**3;\n", "E=180*10**9;\n", "r=36.5;\n", "x=16;\n", "y=3;\n", "a=math.pi*36.5*10**-3;\n", "da=(0.05*a*P/E)*((r/t)**0.2)*((x/y)**0.33)*((x/t)**3);\n", "print (\"Displacement of the free end = %.2f m\" % da)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 2.2" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Natural length of spring = 90.00 mm\n", "Displacement of point C = 3.75 mm\n" ] } ], "source": [ "# 2.2\n", "import math;\n", "P=100*10**3;\n", "A=1500*10**-6;\n", "F=P*A;\n", "Cs=F/3;\n", "Ls=Cs+40;\n", "print (\"Natural length of spring = %.2f mm\" % Ls)\n", "P1=10*10**3;\n", "F1=P1*A;\n", "Ss=3+2*.5;\n", "D=F1/Ss;\n", "print (\"Displacement of point C = %.2f mm\" % D)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.3" ] }, { "cell_type": "code", "execution_count": 61, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Thickness = 0.21 mm\n", "Deflection at center for Pressure of 150 kN/m2= 0.0000 mm\n", "Natural frequency of the diaphragm =52051 rad/sec\n" ] } ], "source": [ "# 2.3\n", "import math;\n", "D=15.0*10**-3;\n", "P=300*10**3;\n", "sm=300*10**6;\n", "t=(3*D**2*P/(16*sm))**0.5*10**3;\n", "print (\"Thickness = %.2f mm\" %t)\n", "P=150*10**3;\n", "v=0.28;\n", "E=200.0*10**9;\n", "dm=3.0*(1-v**2)*D**4*P/(256.0*E*t**3);\n", "print (\"Deflection at center for Pressure of 150 kN/m2= %.4f mm\" %dm)\n", "d=8900;\n", "wn=(20*t*10**-3/D**2)*(E/(3*d*(1-v**2)))**0.5;\n", "print (\"Natural frequency of the diaphragm =%.0f rad/sec\" %wn)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.4" ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Angle of twist= 0.000236 rad\n" ] } ], "source": [ "# 2.4\n", "import math;\n", "T=100;\n", "G=80*10**9;\n", "d=2*15*10**-3;\n", "th=16*T/(math.pi*G*d**3)\n", "print (\"Angle of twist= %.6f rad\" %th)" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Reynoids number = 1697652.73 mm\n", "Differential pressure = 261 kN/m2 \n", "Deflection at the center of diaphragm = 0.02 micro m\n" ] } ], "source": [ "# 2.5\n", "import math;\n", "d=60*10**-3;\n", "Q=80*10**-3;\n", "A=(math.pi/4)*d**2;\n", "v=Q/A;\n", "vi=10**-3;\n", "de=10**3;\n", "Re=v*de*d/vi;\n", "print (\"Reynoids number = %.2f mm\" %Re)\n", "d2=60*10**-3;\n", "d1=100*10**-3;\n", "A2=(math.pi/4)*d2**2;\n", "M=1/((1-(d2/d1)**2)**0.5);\n", "Cd=0.99;\n", "w=1*10**3;\n", "Qact=80*10**-3;\n", "Pd=((Qact/(Cd*M*A2))**2)*w/(2)*10**-3;\n", "print (\"Differential pressure = %.0f kN/m2 \" %Pd)\n", "Po=0.28;\n", "D=10*10**-3;\n", "E=206*10**9;\n", "t=0.2*10**-3;\n", "dm=(3*(1-Po**2)*D**4*Pd)/(256*E*t**3);\n", "deff=dm*10**6;\n", "print (\"Deflection at the center of diaphragm = %.2f micro m\" %deff)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.6" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean velocity of water = 4.47 m/s\n", "Velocity of air= 175.4 m/s\n" ] } ], "source": [ "# 2.6\n", "import math;\n", "Pd=10*10**3;\n", "d=1000;\n", "VmeanW= (2*Pd/d)**0.5;\n", "print (\"Mean velocity of water = %.2f m/s\" %VmeanW)\n", "d=0.65;\n", "Va= (2*Pd/d)**0.5;\n", "print (\"Velocity of air= %.1f m/s\" %Va)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.7" ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "let coefficient of discharge Cd=1\n", "Depth of flow = 0.3 m\n" ] } ], "source": [ "# 2.7\n", "import math;\n", "print ('let coefficient of discharge Cd=1')\n", "H1=0.9;\n", "L=1.2;\n", "g=9.81;\n", "Q=(2.0/3)*L*(2*g)**0.5*(H1)**(1.5);\n", "th=45;\n", "H2=Q*(15.0/8)/(2.0*g)\n", "print (\"Depth of flow = %.1f m\" %H2)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.8" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Uncertinity in discharge = 0.0125 m3/s\n" ] } ], "source": [ "# 2.8\n", "Cd=0.6;\n", "H=0.5;\n", "dH=0.01;\n", "g=9.81;\n", "Q=(8.0/15)*Cd*(2*g)**0.5*(H)**(2.5);\n", "dQ=(2.5*dH/H)*Q;\n", "print (\"Uncertinity in discharge = %.4f m3/s\" %dQ)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.9" ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Displacement = 5.75 mm\n", "Displacement = -12.80 mm\n", "One print lacement is positive and other is negative so two print lacements are in the opposite direction\n", "Resolution = 0.05 mm\n" ] } ], "source": [ "# 2.9\n", "import math;\n", "Rnormal=10000.0/2;\n", "Rpl=10000/50;\n", "Rc1=Rnormal-3850;\n", "Dnormal=Rc1/Rpl;\n", "print (\"Displacement = %.2f mm\" %Dnormal)\n", "Rc2=Rnormal-7560;\n", "Dnormal=Rc2/Rpl;\n", "print (\"Displacement = %.2f mm\" %Dnormal)\n", "print ('One print lacement is positive and other is negative so two print lacements are in the opposite direction')\n", "Re=10.0*1/200;\n", "print (\"Resolution = %.2f mm\" %Re)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.11" ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Output voltage = 3000.000000 V\n" ] } ], "source": [ "#2.11\n", "import math;\n", "RAB=125;\n", "Rtotal=5000;\n", "R2=0.0\n", "R2=(75.0/125.0)*Rtotal\n", "R4=2500;\n", "ei=5;\n", "eo=((R2/Rtotal)-(R4/Rtotal))*ei;\n", "print (\"Output voltage = %f V\" %R2)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.12" ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Maximum excitation voltage = 54.8 V\n", "Sensitivity = 0.152 V/degree\n" ] } ], "source": [ "# 2.12\n", "import math;\n", "Rm=10000;\n", "Rp=Rm/15;\n", "R=600;\n", "P=5;\n", "ei= (P*R)**0.5;\n", "print (\"Maximum excitation voltage = %.1f V\" %ei)\n", "S=ei/360;\n", "print (\"Sensitivity = %.3f V/degree\" %S)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.13" ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Resolution = 0.0005 mm\n" ] } ], "source": [ "# 2.13\n", "import math;\n", "Rwga=1.0/400;\n", "Re=Rwga/5;\n", "print (\"Resolution = %.4f mm\" %Re)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.14" ] }, { "cell_type": "code", "execution_count": 71, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Resolution of 1mm movement = 0.3125 degree/mm\n", "Required Resolution of 1mm movement = 0.300 degree/mm\n", "Since the resolution of potentiometer is higher than the resolution required so it is suitable for the application\n" ] } ], "source": [ "# 2.14\n", "import math;\n", "mo=0.8;\n", "sr=250;\n", "sm=sr/mo;\n", "R=sm*1*10**-3;\n", "print (\"Resolution of 1mm movement = %.4f degree/mm\" %R)\n", "Rq=300.0/1000;\n", "print (\"Required Resolution of 1mm movement = %.3f degree/mm\" %Rq)\n", "print ('Since the resolution of potentiometer is higher than the resolution required so it is suitable for the application')" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.15" ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Power dissipation = 0.667 W\n", "Power dissipation = 0.650 W\n", "Since power dissipation is higher than the dissipation allowed so potentiometer is not suitable\n" ] } ], "source": [ "# 2.15\n", "import math;\n", "Pd=(10.0**2)/150;\n", "print (\"Power dissipation = %.3f W\" %Pd)\n", "th_pot=80+Pd*30;\n", "PDa=(10*10**-3)*(th_pot-35);\n", "print (\"Power dissipation = %.3f W\" %PDa)\n", "print ('Since power dissipation is higher than the dissipation allowed so potentiometer is not suitable')\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.16" ] }, { "cell_type": "code", "execution_count": 73, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Possion s ratio=1.600000\n" ] } ], "source": [ "# 2.16\n", "import math;\n", "Gf=4.2;\n", "v=(Gf-1)/2;\n", "print ('Possion s ratio=%f' %v)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.17" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Change in resistance of nickel = 0.007 ohm\n", "Change in resistance of nicrome = -0.001 ohm\n" ] } ], "source": [ "# 2.17\n", "import math;\n", "strain=-5*10**-6;\n", "Gf=-12.1;\n", "R=120;\n", "dR_nickel=Gf*R*strain;\n", "print (\"Change in resistance of nickel = %.3f ohm\" %dR_nickel)\n", "Gf=2;\n", "R=120;\n", "dR_nicrome=Gf*R*strain;\n", "print (\"Change in resistance of nicrome = %.3f ohm\" %dR_nicrome)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.18" ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Percentage change in resistance = 0.1 \n" ] } ], "source": [ "# 2.18\n", "import math;\n", "s=100.0*10**6;\n", "E=200.0*10**9;\n", "strain=s/E;\n", "Gf=2.0;\n", "r_per_unit=Gf*strain*100.0;\n", "print (\"Percentage change in resistance = %.1f \" %r_per_unit)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.19" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gauge factor = 2.31 \n" ] } ], "source": [ "#2.19\n", "import math;\n", "b=0.02;\n", "d=0.003;\n", "I=(b*d**3)/12;\n", "E=200*10**9;\n", "x=12.7*10**-3;\n", "l=0.25;\n", "F=3*E*I*x/l**3;\n", "x=0.15;\n", "M=F*x;\n", "t=0.003;\n", "s=(M*t)/(I*2);\n", "strain=s/E;\n", "dR=0.152;\n", "R=120;\n", "Gf=(dR/R)/strain;\n", "print (\"Gauge factor = %.2f \" %Gf)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.20" ] }, { "cell_type": "code", "execution_count": 77, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Change in length= 2.5 um \n", " Force= 2038.64 N \n" ] } ], "source": [ "# 2.20\n", "import math;\n", "dR=0.013;\n", "R=240;\n", "l=0.1;\n", "Gf=2.2;\n", "dl=(dR/R)*l/Gf*10**6;\n", "print (\" Change in length= %.1f um \" %dl)\n", "\n", "strain=dl*10**-6/l;\n", "E=207*10**9;\n", "s=E*strain;\n", "A=4*10**-4;\n", "F=s*A;\n", "print (\" Force= %.2f N \" %F)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.21" ] }, { "cell_type": "code", "execution_count": 78, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " alpha at o degree= 0.0085 /degree C \n", "5.5(1+0.0085(th-45))\n" ] } ], "source": [ "# 2.21\n", "import math;\n", "th1=30;\n", "th2=60;\n", "th0=th1+th2/2;\n", "Rth1=4.8;\n", "Rth2=6.2;\n", "Rth0=5.5;\n", "ath0=(1/Rth0)*(Rth2-Rth1)/(th2-th1);\n", "print (\" alpha at o degree= %.4f /degree C \" %ath0)\n", "print ('5.5(1+0.0085(th-45))')" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.22" ] }, { "cell_type": "code", "execution_count": 79, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "alpha at o degree= 0.00182 /degree C \n", "Linear approximation is: Rth= 589.48(1+0.00182(th-115))\n" ] } ], "source": [ "# 2.22\n", "import math;\n", "th1=100;\n", "th2=130;\n", "th0=th1+th2/2;\n", "Rth1=573.40;\n", "Rth2=605.52;\n", "Rth0=589.48;\n", "ath0=(1/Rth0)*(Rth2-Rth1)/(th2-th1);\n", "print (\"alpha at o degree= %.5f /degree C \" %ath0)\n", "print ('Linear approximation is: Rth= 589.48(1+0.00182(th-115))')" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.23" ] }, { "cell_type": "code", "execution_count": 80, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "resistance at 65 degree C= 115.68 ohm \n", " Temperature = 25.00 degree C \n" ] } ], "source": [ "# 2.23\n", "import math;\n", "Rth0=100;\n", "ath0=0.00392;\n", "dth=65-25;\n", "R65=Rth0*(1+ath0*dth);\n", "print (\"resistance at 65 degree C= %.2f ohm \" %R65)\n", "th=(((150/100)-1)/ath0)+25;\n", "print (\" Temperature = %.2f degree C \" %th)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.24" ] }, { "cell_type": "code", "execution_count": 81, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Resistance at 150 degree C=15.11 ohm\n" ] } ], "source": [ "# 2.24\n", "import math;\n", "Rth0=10;\n", "ath0=0.00393;\n", "dth=150-20;\n", "R150=Rth0*(1+ath0*dth);\n", "print (\"Resistance at 150 degree C=%.2f ohm\" %R150)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.25" ] }, { "cell_type": "code", "execution_count": 82, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Time= 109.95 s \n" ] } ], "source": [ "# Calculate the time\n", "import math;\n", "th=30.0;\n", "th0=50;\n", "tc=120;\n", "t=-120*(math.log(1-(th/th0)));\n", "print (\"Time= %.2f s \" %t)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.26" ] }, { "cell_type": "code", "execution_count": 83, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Resistance at 35 degree C= 50.00 ohm \n" ] } ], "source": [ "#2.26\n", "import math;\n", "R25=100;\n", "ath=-0.05;\n", "dth=35-25;\n", "R35=R25*(1+ath*dth);\n", "print (\"Resistance at 35 degree C= %.2f ohm \" %R35)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.27" ] }, { "cell_type": "code", "execution_count": 84, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Resistance at 40 degree C= 967.51 ohm \n", "Resistance at 100 degree C= 130.94 ohm \n" ] } ], "source": [ "# 2.27\n", "import math;\n", "Ro=3980;\n", "Ta=273;\n", "#3980= a*3980*exp(b/273)\n", "Rt50=794;\n", "Ta50=273+50;\n", "#794= a*3980*exp(b/323)\n", "#on solving\n", "#a=30*10**-6, b=2843\n", "Ta40=273+40;\n", "Rt40=(30*10**-6)*3980*math.exp(2843/313);\n", "print (\"Resistance at 40 degree C= %.2f ohm \" %Rt40)\n", "Rt100=(30*10**-6)*3980*math.exp(2843/373);\n", "print (\"Resistance at 100 degree C= %.2f ohm \" %Rt100)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.28" ] }, { "cell_type": "code", "execution_count": 85, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Change in temperature= 20.0 degree C \n" ] } ], "source": [ "# 2.28\n", "import math;\n", "th=((1-1800/2000)/0.05)+70;\n", "dth=th-70;\n", "print (\"Change in temperature= %.1f degree C \" %dth)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.29" ] }, { "cell_type": "code", "execution_count": 86, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Frequency of oscillation at 20 degree C = 25464.79 Hz \n", "Frequency of oscillation at 25 degree C = 31830.99 Hz \n", "Frequency of oscillation at 30 degree C = 42441.32 Hz \n" ] } ], "source": [ "# 2.29\n", "import math;\n", "C=500*10**-12;\n", "R20=10000*(1-0.05*(20-25));\n", "f20=1/(2*math.pi*R20*C);\n", "print (\"Frequency of oscillation at 20 degree C = %.2f Hz \" %f20)\n", "R25=10000*(1-0.05*(25-25));\n", "f25=1/(2*math.pi*R25*C);\n", "print (\"Frequency of oscillation at 25 degree C = %.2f Hz \" %f25)\n", "R30=10000*(1-0.05*(30-25));\n", "f30=1/(2*math.pi*R30*C);\n", "print (\"Frequency of oscillation at 30 degree C = %.2f Hz \" %f30)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.30" ] }, { "cell_type": "code", "execution_count": 87, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sensitivity of thermocouple= 572.0 micro V/degree C\n", "Maximum output voltage= 0.06 V \n" ] } ], "source": [ "# 2.30\n", "import math;\n", "Se_thermocouple=500-(-72);\n", "print (\"Sensitivity of thermocouple= %.1f micro V/degree C\" %Se_thermocouple)\n", "Vo=Se_thermocouple*100*10**-6;\n", "print (\"Maximum output voltage= %.2f V \" %Vo)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.31" ] }, { "cell_type": "code", "execution_count": 88, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Required e.m.f.= 27.87 mV \n", "Temperature corresponding to 27.87 mV is 620 degree C\n" ] } ], "source": [ "# 2.31\n", "import math;\n", "ET=27.07+0.8;\n", "print (\"Required e.m.f.= %.2f mV \" %ET)\n", "print ('Temperature corresponding to 27.87 mV is 620 degree C')" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.32" ] }, { "cell_type": "code", "execution_count": 89, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Series resistance=271.00 ohm\n", "Approximate error due to rise in resistance of 1 ohm in Re=-2.40 degree C\n", "Approximate error due to rise in Temp. of 10=-7.45 degree C\n" ] } ], "source": [ "# 2.32\n", "import math;\n", "Rm=50;\n", "Re=12;\n", "E=33.3*10**-3;\n", "i=0.1*10**-3;\n", "Rs=(E/i)-Rm-Re;\n", "print (\"Series resistance=%.2f ohm\" %Rs)\n", "Re=13;\n", "i1=E/(Rs+Re+Rm);\n", "AE=((i1-i)/i)*800;\n", "print (\"Approximate error due to rise in resistance of 1 ohm in Re=%.2f degree C\" %AE)\n", "R_change=50*0.00426*10;\n", "i1=E/(Rs+Re+Rm+R_change);\n", "AE=((i1-i)/i)*800;\n", "print (\"Approximate error due to rise in Temp. of 10=%.2f degree C\" %AE)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.3" ] }, { "cell_type": "code", "execution_count": 90, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Value of resistance R1=5.95 ohm\n", "Value of resistance R2=762.60 ohm\n" ] } ], "source": [ "# 2.33\n", "import math;\n", "E_20=0.112*10**-3;# emf at 20degree C\n", "E_900=8.446*10**-3;\n", "E_1200=11.946*10**-3;\n", "E1=E_900-E_20;\n", "E2=E_1200-E_20;\n", "#E1=1.08*R1/(R1+2.5+R2 (i)\n", "#E2=1.08*(R1+2.5)/(R1+2.5+R2 (ii)\n", "#on solving (i) and (ii)\n", "R1=5.95;\n", "R2=762.6;\n", "print (\"Value of resistance R1=%.2f ohm\" %R1)\n", "print (\"Value of resistance R2=%.2f ohm\" %R2)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.34" ] }, { "cell_type": "code", "execution_count": 91, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Value of resistance R1=5.95 ohm\n", "value of resistance RL>>Rl\n" ] } ], "source": [ "# 2.34\n", "import math;\n", "th=20;\n", "Vz=2.73+th*10*10**-3;\n", "Voffset=-2.73;\n", "Vout=Vz+Voffset;\n", "Rbias=(5-0.2)/10**-3;\n", "Rzero=500;\n", "th=50;\n", "Vz=2.73+th*10*10**-3;\n", "VmaxT=Vz+Voffset;\n", "Vsupply=5;\n", "Rl=(VmaxT*Rbias)/(Vsupply-VmaxT);\n", "print (\"Value of resistance R1=%.2f ohm\" %R1)\n", "print ('value of resistance RL>>Rl')" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.35" ] }, { "cell_type": "code", "execution_count": 92, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Change in inductance=0.04 mH\n" ] } ], "source": [ "# 2.35\n", "import math;\n", "L1=2;\n", "La=1-0.02;\n", "Lnew=2/La;\n", "dl=Lnew-L1;\n", "print (\"Change in inductance=%.2f mH\" %dl)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.36" ] }, { "cell_type": "code", "execution_count": 93, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "percentage linearity=0.20 \n" ] } ], "source": [ "# 2.36\n", "import math;\n", "linearity_percentage=(0.003/1.5)*100;\n", "print (\"percentage linearity=%.2f \" %linearity_percentage)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.37" ] }, { "cell_type": "code", "execution_count": 94, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "senstivity of the LVDT=0.004 V/mm\n", "Senstivity of the instrument=1.0 V/mm\n", "resolution of instrument=0.001 mm\n" ] } ], "source": [ "# 2.37\n", "import math;\n", "displacement=0.5;\n", "Vo=2*10**-3;\n", "Se_LVDT=Vo/displacement;\n", "print (\"senstivity of the LVDT=%.3f V/mm\" %Se_LVDT)\n", "Af=250;\n", "Se_instrument=Se_LVDT*Af;\n", "print (\"Senstivity of the instrument=%.1f V/mm\" %Se_instrument)\n", "sd=5/100;\n", "Vo_min=50/5;\n", "Re_instrument=1*1.0/1000;\n", "print (\"resolution of instrument=%.3f mm\" %Re_instrument)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.38" ] }, { "cell_type": "code", "execution_count": 95, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "deflection=0.01 m\n", "minimum force=0.02 N\n", "maximum force=81.92 N\n" ] } ], "source": [ "# 2.38\n", "import math;\n", "b=0.02;\n", "t=0.004;\n", "I=(1.0/12)*b*t**3;\n", "F=25;\n", "l=0.25;\n", "E=200.0*10**9;\n", "x=(F*l**3)/(3.0*E*I);\n", "print (\"deflection=%.2f m\" %x)\n", "DpF=x/F;\n", "Se=DpF*0.5*1000;\n", "Re=(10.0/1000)*(2.0/10);\n", "F_min=Re/Se;\n", "F_max=10/Se;\n", "print (\"minimum force=%.2f N\" %F_min)\n", "print (\"maximum force=%.2f N\" %F_max)\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.39" ] }, { "cell_type": "code", "execution_count": 96, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "permittivity of the air e0=8.85*10**-12\n", "sensitivity of the transducer=-0.00 F/m\n" ] } ], "source": [ "# 2.39\n", "import math;\n", "print ('permittivity of the air e0=8.85*10**-12')\n", "e0=8.85*10**-12;\n", "w=25.0*10**-3;\n", "d=0.25*10**-3;\n", "Se=-4.0*e0*w/d;\n", "print (\"sensitivity of the transducer=%.2f F/m\" %Se)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.40" ] }, { "cell_type": "code", "execution_count": 97, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the value of the capacitance afte the application of pressure=446.55 pF\n" ] } ], "source": [ "# 2.40\n", "import math;\n", "C1=370*10**-12;\n", "d1=3.5*10**-3;\n", "d2=2.9*10**-3;\n", "C2=C1*d1*10**12/d2;\n", "print (\"the value of the capacitance afte the application of pressure=%.2f pF\" %C2)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.41" ] }, { "cell_type": "code", "execution_count": 114, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "change in frequency of the oscillator=-9.607692e+07 kHz\n" ] } ], "source": [ "# 2.41\n", "import math;\n", "fo1=100*10**3;\n", "d1=4;\n", "d2=3.7;\n", "fo2=((d2/d1)**0.5)*fo1;\n", "dfo=fo1-fo2/10**-3;\n", "print (\"change in frequency of the oscillator=%e kHz\" %dfo)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.42" ] }, { "cell_type": "code", "execution_count": 99, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Capacitance=33.9 pF\n", "change in Capacitance=3.4 pF\n" ] } ], "source": [ "# 2.42\n", "import math;\n", "L_air=(3.1-3)/2;\n", "D_stress=100/L_air;\n", "e0=8.85*10**-12;\n", "l=20*10**-3;\n", "D2=3.1;\n", "D1=3;\n", "C=(2*math.pi)*e0*l*10**12/(math.log(D2/D1));\n", "print (\"Capacitance=%.1f pF\" %C)\n", "l=(20*10**-3)-(2*10**-3);\n", "C_new=(2*math.pi)*e0*l/(math.log(D2/D1));\n", "C_change=C-C_new*10**12;\n", "print (\"change in Capacitance=%.1f pF\" %C_change)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.43" ] }, { "cell_type": "code", "execution_count": 116, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Time constant=0.02 s\n", "Phase shift=18.2 deg\n", "Series resistance=1140 Mohm\n", "Amplitude ratio=0.6 \n", "Voltage sensitivity=800000 V/m\n" ] } ], "source": [ "#2.43\n", "import math;\n", "M=0.95;\n", "w=2*math.pi*20;\n", "tc=(1/w)*((M**2)/(1-M**2))**0.5;\n", "print (\"Time constant=%.2f s\" %tc)\n", "ph=((math.pi/2)-(math.atan(w*tc)))*(180/math.pi);\n", "print (\"Phase shift=%.1f deg\" %ph)\n", "C=(8.85*10**-12*300*10**-6)/(0.125*10**-3);\n", "R=tc*10**-6/C;\n", "print (\"Series resistance=%.0f Mohm\" %R)\n", "M=1/(1+(1/(2*math.pi*5*tc)**2))**0.5;\n", "print (\"Amplitude ratio=%.1f \" %M)\n", "Eb=100;\n", "x=0.125*10**-3;\n", "Vs=Eb/x;\n", "print (\"Voltage sensitivity=%d V/m\" %Vs)\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.44" ] }, { "cell_type": "code", "execution_count": 101, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ratio of per unit change of capacitance to per unit change of diaplacement=1.11\n", " New ratio of per unit change of capacitance to per unit change of diaplacement=1.17\n" ] } ], "source": [ "#2.44\n", "import math;\n", "e0=8.85*10**-12;\n", "A=500*10**-6;\n", "d=0.2*10**-3;\n", "C=e0*A/d;\n", "d1=0.18*10**-3;\n", "C_new=e0*A/d1;\n", "C_change=C_new-C;\n", "Ratio=(C_change/C)/(0.02/0.2);\n", "print (\"ratio of per unit change of capacitance to per unit change of diaplacement=%.2f\" %Ratio)\n", "d1=0.19*10**-3;\n", "e1=1;\n", "d2=0.01*10**-3;\n", "e2=8;\n", "C=(e0*A)/((d1/e1)+(d2/e2));\n", "d1_new=0.17*10**-3;\n", "C_new=(e0*A)/((d1_new/e1)+(d2/e2));\n", "C_change=C_new-C;\n", "Ratio=(C_change/C)/(0.02/0.2);\n", "print (\" New ratio of per unit change of capacitance to per unit change of diaplacement=%.2f\" %Ratio)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.47" ] }, { "cell_type": "code", "execution_count": 102, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Output voltage=165 V\n", " Charge sensitivity=2.23 pC/N\n" ] } ], "source": [ "# 2.47\n", "import math;\n", "g=0.055;\n", "t=2*10**-3;\n", "P=1.5*10**6;\n", "Eo=g*t*P;\n", "print (\"Output voltage=%.0f V\" %Eo)\n", "e=40.6*10**-12;\n", "d=e*g*10**12;\n", "print (\" Charge sensitivity=%.2f pC/N\" %d)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.48" ] }, { "cell_type": "code", "execution_count": 103, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Force=30 N\n" ] } ], "source": [ "# 2.48\n", "import math;\n", "g=0.055;\n", "t=1.5*10**-3;\n", "Eo=100;\n", "P= Eo/(g*t);\n", "A=25*10**-6;\n", "F=P*A;\n", "print (\" Force=%.0f N\" %F)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.49" ] }, { "cell_type": "code", "execution_count": 104, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " strain=0.0167 \n", " Charge=750 pC\n", " capacitance=250 pF\n" ] } ], "source": [ "# 2.49\n", "import math;\n", "A=25*10**-6;\n", "F=5;\n", "P=F/A;\n", "d=150*10**-12;\n", "e=12.5*10**-9;\n", "g=d/(e);\n", "t=1.25*10**-3;\n", "Eo=(g*t*P);\n", "strain=P/(12*10**6);\n", "Q=d*F*10**12;\n", "C=Q/Eo;\n", "print (\" strain=%.4f \" %strain)\n", "print (\" Charge=%.0f pC\" %Q)\n", "print (\" capacitance=%.0f pF\" %C)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.50" ] }, { "cell_type": "code", "execution_count": 106, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " peak voltage swing under open conditions=9.04 mV\n", " peak voltage swing under loaded conditions=1.52 mV\n", " Maximum change in crystal thickness=2.22 pm\n" ] } ], "source": [ "# 2.50\n", "import math;\n", "d=2*10**-12;\n", "t=1*10**-3;\n", "Fmax=0.01;\n", "e0=8.85*10**-12;\n", "er=5;\n", "A=100*10**-6;\n", "Eo_peak_to_peak=2*d*t*Fmax*10**3/(e0*er*A);\n", "print (\" peak voltage swing under open conditions=%.2f mV\" %Eo_peak_to_peak)\n", "Rl=100*10**6;\n", "Cl=20*10**-12;\n", "d1=1*10**-3;\n", "Cp=e0*er*A/d1;\n", "C=Cp+Cl;\n", "w=1000;\n", "m=(w*Cp*Rl/(1+(w*C*Rl)**2)**0.5);\n", "El_peak_to_peak=(2*d*t*Fmax*10**3/(e0*er*A))*m;\n", "print (\" peak voltage swing under loaded conditions=%.2f mV\" %El_peak_to_peak)\n", "E=90*10**9;\n", "dt=2*Fmax*t*10**12/(A*E);\n", "print (\" Maximum change in crystal thickness=%.2f pm\" %dt)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.51" ] }, { "cell_type": "code", "execution_count": 107, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Minimum frequency=2028.29 rad/sec\n", " Phase shift=18.19 deg\n" ] } ], "source": [ "# 2.51\n", "import math;\n", "M=0.95;\n", "tc=1.5*10**-3;\n", "w=(1/tc)*((M**2)/(1-M**2))**0.5;\n", "print (\" Minimum frequency=%.2f rad/sec\" %w)\n", "ph=((math.pi/2)-(math.atan(w*tc)))*(180/math.pi);\n", "print (\" Phase shift=%.2f deg\" %ph)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.52" ] }, { "cell_type": "code", "execution_count": 108, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Sensitivity of the transducer=40000000.00 V/m\n", " High frequency sensitivity =29629629.63 V/m\n", " Minimum frequency=358.68 sec\n", "now f=10Hz\n", " External shunt capacitance=0.05 pF\n", " new value of high frequency sensitivity=826073.26 V/m\n" ] } ], "source": [ "#2.52\n", "import math;\n", "Kq=40*10**-3;\n", "Cp=1000*10**-12;\n", "K=Kq/Cp;\n", "print (\" Sensitivity of the transducer=%.2f V/m\" %K)\n", "Cc=300*10**-12;\n", "Ca=50*10**-12;\n", "C=Cp+Cc+Ca;\n", "Hf=Kq/C;\n", "print (\" High frequency sensitivity =%.2f V/m\" %Hf)\n", "R=1*10**6;\n", "tc=R*C;\n", "M=0.95;\n", "w=(1/tc)*((M**2)/(1-M**2))**0.5;\n", "f=w/(2*math.pi);\n", "print (\" Minimum frequency=%.2f sec\" %f)\n", "print ('now f=10Hz')\n", "f=10;\n", "w=2*math.pi*f;\n", "tc=(1/w)*((M**2)/(1-M**2))**0.5;\n", "C_new=tc/R;\n", "Ce=(C_new-C)*10**6;\n", "print (\" External shunt capacitance=%.2f pF\" %Ce)\n", "Hf_new=Kq/C_new;\n", "print (\" new value of high frequency sensitivity=%.2f V/m\" %Hf_new)\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.53" ] }, { "cell_type": "code", "execution_count": 109, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Voltage just before t=2ms =1.00 mV\n", "(-2.2026841435311137, 'voltage just after t=2ms (mV)')\n", "Voltage just after t=2ms =-2.20 mV\n", "when t=10ms\n", "output voltage 10 ms after the application of impulse =0 mV\n" ] } ], "source": [ "# 2.53\n", "import math;\n", "R=10**6;\n", "C=2500*10**-12;\n", "tc=R*C;\n", "t=2*10**-3;\n", "d=100*10**-12;\n", "F=0.1;\n", "el=10.0**3*(d*F*(math.exp(-t/tc))/C);\n", "print (\"Voltage just before t=2ms =%.2f mV\" %e1)\n", "el_after=10**3*(d*F*(math.exp(-t/tc)-1)/C);\n", "print (el_after,'voltage just after t=2ms (mV)')\n", "print (\"Voltage just after t=2ms =%.2f mV\" %el_after)\n", "print ('when t=10ms')\n", "t=10.0*10**-3;\n", "T=2.0*10\n", "e_10=10.0**3*(d*F*(math.exp((-T/tc)-1))*(math.exp(-(t-T))/tc)/C)\n", "print (\"output voltage 10 ms after the application of impulse =%.0f mV\" %e_10)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.54" ] }, { "cell_type": "code", "execution_count": 110, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Let T=1\n", "Time constant =19.50 s\n", "as T=1 so time constant should be approximately equal to 20T\n" ] } ], "source": [ "# 2.54\n", "import math;\n", "print ('Let T=1');\n", "T=1;\n", "el=0.95;\n", "tc=-T/math.log(el);\n", "print (\"Time constant =%.2f s\" %tc)\n", "print ('as T=1 so time constant should be approximately equal to 20T')" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.55" ] }, { "cell_type": "code", "execution_count": 111, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "output voltage =-0.75 mV\n" ] } ], "source": [ "#2.55\n", "import math;\n", "Kh=-1*10**-6;\n", "I=3;\n", "B=0.5;\n", "t=2*10**-3;\n", "Eh=Kh*I*B*10**3/t;\n", "print (\"output voltage =%.2f mV\" %Eh)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.56" ] }, { "cell_type": "code", "execution_count": 112, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "External resistance required =-999.997 ohm\n", "Dark current =0.29 mA\n" ] } ], "source": [ "#2.56\n", "import math;\n", "R1=(30/10*10**-3)-1000;\n", "print (\"External resistance required =%.3f ohm\" %R1)\n", "Id=30.0*10**3/((2*10**3)+(100*10**3))\n", "print (\"Dark current =%.2f mA\" %Id)\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Exa 2.57" ] }, { "cell_type": "code", "execution_count": 113, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Potential of point b, Vb= 5.000000\n", "Potential of point d, Vd= 10.000000\n", "Outout voltage of bridge =-5.00 V\n" ] } ], "source": [ "#2.57\n", "import math;\n", "Vb=10-(10.0/((2*10**3))*10**3);\n", "print ('Potential of point b, Vb= %f'%Vb)\n", "Vd=10-(10/((3*10**3))*2*10**3);\n", "print ('Potential of point d, Vd= %f' %Vd)\n", "Ebd=Vb-Vd;\n", "print (\"Outout voltage of bridge =%.2f V\" %Ebd)\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }