{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 2: Spectroscopy and Photochemistry" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 1, Page no: 65" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Constants\n", "m_br79 = 78.9183 # Mass of 79Br, amu\n", "m_br81 = 80.9163 # Mass of 91Br, amu\n", "Na = 6.022 * 10 ** 23 # Mole constant, /mol\n", "pi = 3.141 # Pi\n", "c = 3 * 10 ** 10 # Speed of light, cm /s\n", "\n", "# Variable\n", "wave_no = 323.2 # Wave no. of fund. vibration of 79Br - 81Br, /cm\n", "\n", "# Solution\n", "mu = (m_br79 * m_br81) / ((m_br79 + m_br81) * Na)\n", "\n", "k = 4 * (pi * c * wave_no) ** 2 * mu * 10 ** -3\n", "\n", "print \"The force constant of the bond is\", \"{:.3e}\".format(k), \"N/m\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The force constant of the bond is 2.461e+02 N/m\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 2, Page no: 65" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Constants\n", "Na = 6.022 * 10 ** 23 # Mole constant, /mol\n", "pi = 3.141 # Pi\n", "c = 3 * 10 ** 10 # Speed of light, cm /s\n", "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", "\n", "# Variables\n", "b_l = 112.81 * 10 ** -12 # Equillibrium bond length, m\n", "m1 = 12 # Mass of Carbon, g /mol\n", "m2 = 16 # Mass of Oxygen, g /mol\n", "\n", "# Solution\n", "mu = m1 * m2 / ((m1 + m2) * Na) # g\n", "mu *= 10 ** -3 # kg\n", "\n", "B = h / (8 * pi ** 2 * mu * b_l ** 2 * c)\n", "v2_3 = B * 6\n", "\n", "print \"The reduced mass of CO is\", \"{:.3e}\".format(mu), \"kg\"\n", "print \"The frequency of 3->2 transition is\", \"{:.2f}\".format(v2_3), \"/cm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The reduced mass of CO is 1.139e-26 kg\n", "The frequency of 3->2 transition is 11.59 /cm\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 3, Page no: 66" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Constants\n", "Na = 6.022 * 10 ** 23 # Mole constant, /mol\n", "\n", "# Variables\n", "d_NaCl = 2.36 * 10 ** -10 # Intermolecular dist. NaCl, m\n", "m_Cl = 35 * 10 ** -3 # Atomic mass, kg /mol\n", "m_Na = 23 * 10 ** -3 # Atomic mass, kg /mol\n", "\n", "# Solution\n", "mu = m_Na * m_Cl / ((m_Na + m_Cl) * 10 ** -3 * Na) * 10 ** -3\n", "\n", "I = mu * d_NaCl ** 2\n", "\n", "print \"The reduced mass of NaCl is\", \"{:.3e}\".format(mu), \"kg\"\n", "print \"The moment of inertia of NaCl is\", \"{:.3e}\".format(I), \"kg.m^2\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The reduced mass of NaCl is 2.305e-26 kg\n", "The moment of inertia of NaCl is 1.284e-45 kg.m^2\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 4, Page no: 66" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Constant\n", "e = 4000 # Extinction coeff., dm^3/mol/cm\n", "\n", "# Variable\n", "x = 3 # Solution thickness, cm\n", "\n", "# Solution\n", "A = math.log10(1 / 0.3) # Absorbance\n", "C = A / (e * x)\n", "\n", "print \"The concentration of the solution is\", \"{:.2e}\".format(C), \"mol/dm^3\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The concentration of the solution is 4.36e-05 mol/dm^3\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 5, Page no: 67" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Constants\n", "pi = 3.141 # Pi\n", "c = 3 * 10 ** 10 # Speed of light, cm /s\n", "\n", "# Variables\n", "v_bar = 2140 # Fundamental vibrating freq, /cm\n", "m_C = 19.9 * 10 ** -27 # Atomic mass of C, kg\n", "m_O = 26.6 * 10 ** -27 # Atomic mass of O, kg\n", "\n", "# Solution\n", "mu = m_O * m_C / (m_C + m_O)\n", "k = 4 * (pi * c * v_bar) ** 2 * mu\n", "\n", "print \"The force constant of the molecule is\", \"{:.3e}\".format(k), \"N/m\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The force constant of the molecule is 1.852e+03 N/m\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 6, Page no: 67" ] }, { "cell_type": "code", "collapsed": false, "input": [ "print \"a) Microwave < IR < UV-Visible < X-Ray.\"\n", "print \"b) HCl and NO because they possess permanent dipole moments, so they are rotationally active.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a) Microwave < IR < UV-Visible < X-Ray.\n", "b) HCl and NO because they possess permanent dipole moments, so they are rotationally active.\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 7, Page no: 67" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Constants\n", "pi = 3.141 # pi\n", "c = 3 * 10 ** 10 # speed of light, cm /s\n", "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", "Na = 6.022 * 10 ** 23 # Mole constant, /mol\n", "\n", "# Variables\n", "d = 20.7 # Interspacing, /cm\n", "m1 = 1 # Mass of H, g / mol\n", "m2 = 35.5 # Masso f Cl, g / mol\n", "\n", "# Solution\n", "B = 0.1035 * 10 ** 2 # /m\n", "I = h / (8 * pi ** 2 * B * c)\n", "mu = m1 * m2 / ((m1 + m2) * Na)\n", "mu *= 10 ** -3\n", "r = math.sqrt(I / mu)\n", "\n", "print \"The intermolecular distance of HCl is\", \"{:.3e}\".format(r), \"m\"\n", "# Discrepency in value is due to error in calculation in the textbook\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The intermolecular distance of HCl is 1.294e-10 m\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 8, Page no: 68" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Constant\n", "e = 8000 # Molar absorbtion coeff, dm^3 / mol / cm\n", "\n", "# Variable\n", "l = 2.5 # Thickness of solution, cm\n", "\n", "# Solution\n", "C = math.log10(1 / 0.3) / (e * l)\n", "\n", "print \"The concentration of Solution from Lambert-Beer's Law is\",\n", "print \"{:.2e}\".format(C), \"mol/dm^3\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The concentration of Solution from Lambert-Beer's Law is 2.61e-05 mol/dm^3\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 9, Page no: 68" ] }, { "cell_type": "code", "collapsed": false, "input": [ "print \"a) In the visible-UV spectra, CH2 = CHOCHOCH3 exhibits\"\n", "print \"a higher value of lambda(max) because it has two conjugated\"\n", "print \"chromophores, that is, one double bond (C=C) and a carbonyl\"\n", "print \"group.\"\n", "\n", "print\n", "print \"b) Because of the symmetrical vibrations of C=C double bond and\"\n", "print \"triple bond, ethylene and acetylene do not absorb IR energy.\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a) In the visible-UV spectra, CH2 = CHOCHOCH3 exhibits\n", "a higher value of lambda(max) because it has two conjugated\n", "chromophores, that is, one double bond (C=C) and a carbonyl\n", "group.\n", "\n", "b) Because of the symmetrical vibrations of C=C double bond and\n", "triple bond, ethylene and acetylene do not absorb IR energy.\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 10, Page no: 68" ] }, { "cell_type": "code", "collapsed": false, "input": [ "print \"Because CO2 is a linear molecule.\"\n", "v_deg = 3 * 3 - 5\n", "print \"The vibrational degree of freedom is\", v_deg" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Because CO2 is a linear molecule.\n", "The vibrational degree of freedom is 4\n" ] } ], "prompt_number": 14 } ], "metadata": {} } ] }