{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

Chapter No 1 : Semiconductor Materials and\n", "Their Properties

" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.3, Page No 37 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Finding Density of silicon crystal\n", "\n", "#initialisation of variables\n", "a=5.3 #in \u00c5\n", "a=a*10**-10 #in m\n", "N_A=6.023*10**23 \n", "At_Si=28 #atomic weight of Si\n", "n = 4\n", "m=At_Si/N_A #in gm\n", "m= m*10**-3 #in kg\n", "V=a**3 #in m^3\n", "\n", "#CALCULATIONS\n", "Rho=((m*n)/V)/1000 #in kg/m^3\n", "\n", "# Note: There is calculation error to find the value of density. So the answer in the book is wrong.#RESULTS\n", "#RESULTS\n", "print('Density of silicon crystal in kg/m^3 is = %.2f kg/m^3' %Rho)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Density of silicon crystal in kg/m^3 is = 1.25 kg/m^3\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.4, Page No 37 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "# Finding Density of the crystal \n", "\n", "#initialisation of variables\n", "n = 4\n", "r = 1.278 #in \u00c5\n", "\n", "#CALCULATIONS\n", "a = (4*r)/(math.sqrt(2)) #in\u00c5\n", "a = a * 10**-10 #in m\n", "V = (a)**3 #in m^3\n", "At_W = 63.5 #atomic weight\n", "N_A = 6.023*10**23\n", "m = At_W /N_A #in gm\n", "m = m*10**-3 #in kg\n", "Rho = ((m*n)/V)/1000 #in kg/m^3\n", "\n", "#RESULTS\n", "print('Density of the crystal in kg/m^3 is =%.2f kg/m^3' %Rho)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Density of the crystal in kg/m^3 is =8.93 kg/m^3\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.5 Page No 43 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Finding Wavaelength of X ray\n", "\n", "import math\n", "from numpy import *\n", "#initialisation of variables\n", "d=2.82 #in \u00c5\n", "d=d*10**-10 #in m\n", "n=1\n", "theta1=10 #n degree\n", "\n", "#CALCULATIONS\n", "lembda=2*d*math.sin(math.radians(theta1)) #in m\n", "lembda=lembda*10**10 #in \u00c5\n", "\n", "#RESULTS\n", "print('Wavaelength of X ray is =%.2f \u00c5 degrees' %lembda)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavaelength of X ray is =0.98 \u00c5 degrees\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.6, Page No 43" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Finding The spacing of atomic layer\n", "\n", "import math\n", "#initialisation of variables\n", "lembda = 1.6 #in \u00c5\n", "theta = 14.2 #in degree\n", "n = 1\n", "\n", "#CALCULATIONS\n", "d = (n*lembda)/(2*math.sin(math.radians(theta))) #in \u00c5\n", "\n", "#RESULTS\n", "print('The spacing of atomic layer in crystal is =%.2f in \u00c5 degrees' %d)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The spacing of atomic layer in crystal is =3.26 in \u00c5 degrees\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.7 Page No 43" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Finding The interplanner spacing\n", "\n", "import math\n", "#initialisation of variables\n", "n = 1\n", "theta1 = 30 #in degree\n", "lembda = 1.78 #in \u00c5\n", "\n", "#CALCULATIONS\n", "d = (n*lembda)/(2*math.sin(math.radians(theta1))) #in \u00c5\n", "\n", "#RESULTS\n", "print('The interplanner spacing is =%.2f in \u00c5 degrees' %d)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The interplanner spacing is =1.78 in \u00c5 degrees\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.8 Page No 43" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Finding Interplaner spacing of the crystal\n", "\n", "import math\n", "\n", "#initialisation of variables\n", "lembda = 0.58 #in \u00c5\n", "n = 1;\n", "theta1 = 6.45 # in degree\n", "\n", "#CALCULATIONS\n", "d = (n*lembda)/(2*math.sin(math.radians(theta1))) #in \u00c5 \n", "print('Part (i) : At angle of 6.45\u00b0, Interplaner spacing of the crystal is =%.2f \u00c5' %d)\n", "theta2 = 9.15 #in degree\n", "d1 = (n*lembda)/(2*math.sin(math.radians(theta2))) #in \u00c5 \n", "print('Part (ii) : At angle of 9.15\u00b0, Interplaner spacing of the crystal is =%.2f \u00c5' %d1)\n", "theta3 = 13 #in degree\n", "n2 = 1\n", "d2 = (n2*lembda)/(2*math.sin(math.radians(theta3))) #in \u00c5\n", "print('Part (iii) : At angle of 13\u00b0, Interplaner spacing of the crystal is =%.2f \u00c5' %d2)\n", "n=2\n", "d2 = (n*lembda)/(2*math.sin(math.radians(theta3))) #in \u00c5 \n", "\n", "#RESULTS\n", "print('Part (iv) : : The interplaner spacing is : =%.4f \u00c5' %d2)\n", "print('The interplaner spacing for some other set of reflecting is : =%.2f \u00c5' %d1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part (i) : At angle of 6.45\u00b0, Interplaner spacing of the crystal is =2.58 \u00c5\n", "Part (ii) : At angle of 9.15\u00b0, Interplaner spacing of the crystal is =1.82 \u00c5\n", "Part (iii) : At angle of 13\u00b0, Interplaner spacing of the crystal is =1.29 \u00c5\n", "Part (iv) : : The interplaner spacing is : =2.5783 \u00c5\n", "The interplaner spacing for some other set of reflecting is : =1.82 \u00c5\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.9, Page No 44 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Finding The glancing angle for a cubic in degree\n", "\n", "import math\n", "from sympy.mpmath import *\n", "import cmath\n", "\n", "#initialisation of variables\n", "a = 2.814 #in \u00c5\n", "l = 0\n", "h = l\n", "k = 0\n", "d=a #in \u00c5\n", "n = 2\n", "\n", "#CALCULATIONS\n", "lembda=0.710 #in \u00c5\n", "theta = math.degrees(math.asin(n*lembda/(2*d)))\n", "\n", "#RESULTS\n", "print('The glancing angle for a cubic in degree is : =%.2f \u00c5 degrees' %theta)\n", "print('Anwser is in points i.e = 14 36\"40\"..')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The glancing angle for a cubic in degree is : =14.61 \u00c5 degrees\n", "Anwser is in points i.e = 14 36\"40\"..\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.10 Page No 44" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Finding Wavelength of X ray\n", "\n", "import math \n", "\n", "#initialisation of variables\n", "a = 3.65 #in \u00c5\n", "a = 3.65*10**-10 #in m\n", "h = 1\n", "k = 0\n", "l = 0\n", "\n", "#CALCULATIONS\n", "d= a/(math.sqrt(h**2+k**2+l**2)) #in m\n", "n = 1\n", "theta=60 #in degree\n", "lembda = 2*d*math.sin(math.radians(theta)) #in m\n", "lembda = lembda * 10**10 #in \u00c5\n", "\n", "#RESULTS\n", "print('Wavelength of X ray is : =%.2f \u00c5' %lembda)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength of X ray is : =6.32 \u00c5\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.11 Page No 44" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Finding The glancing angle in degree\n", "\n", "import math\n", "\n", "#initialisation of variables\n", "lembda = 1.54 #in \u00c5\n", "density = 9.024 #in gm/cc\n", "n = 1\n", "MI = 100\n", "At_W = 63.54 #atomic weight\n", "N_A = 6.023*10**23 \n", "m = At_W/N_A #in gm\n", "a =(density*m)**(1.0/3) #in cm\n", "h = 1\n", "k = 0\n", "l = 0\n", "\n", "#CALCULATIONS\n", "d= a/(math.sqrt(h**2+k**2+l**2))\n", "theta =math.degrees((lembda*10**-8)/(2*d)) #in degree\n", "\n", "\n", "#RESULTS\n", "print('The glancing angle is = %.2f degrees' %theta)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The glancing angle is = 4.48 degrees\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.12 Page No 45 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Finding To get the 2nd order spectrum the position of the detector in degree\n", "\n", "import math\n", "\n", "#initialisation of variables\n", "a = 3.615 #in \u00c5\n", "theta=22 #in degree\n", "n=1\n", "h=1\n", "k=h\n", "l=k\n", "\n", "#CALCULATIONS\n", "d = a/(math.sqrt( ((h)**2) + ((k)**2) + ((l)**2) )) #in \u00c5\n", "lembda = 2*d*math.sin(math.radians(theta)) #in \u00c5\n", "print('The wavelength of X ray is = %.2f \u00c5 ' %lembda)\n", "theta2 =math.degrees(math.asin(lembda/d)) #in degree\n", " #in degree\n", "\n", "#RESULTS\n", "print('To get the 2nd order spectrum the position of the detector is = %.2f degrees ' %theta2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of X ray is = 1.56 \u00c5 \n", "To get the 2nd order spectrum the position of the detector is = 48.52 degrees \n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.13, Page No 45" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "n = 1\n", "lembda = 1.54 # in \u00c5\n", "theta = 21.7 # in degree\n", "\n", "#CALCULATIONS\n", "d = lembda/(2*math.sin(math.radians(theta))) # in \u00c5\n", "h = 1\n", "k = h\n", "l = k\n", "a = d*math.sqrt(h**2+k**2+l**2) # in \u00c5\n", "\n", "#RESULTS\n", "print('Lattice constant is = %.2f in \u00c5 ' %a)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Lattice constant is = 3.61 in \u00c5 \n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.14, Page No 47" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "h = 2\n", "k = 1\n", "l = 1\n", "a = 4.8 # in \u00c5\n", "\n", "#CALCULATIONS\n", "d_211 = a/(math.sqrt(h**2+k**2+l**2)) #in \u00c5\n", "\n", "#RESULTS\n", "print('The distance between planes is =%.2f \u00c5 ' %d_211)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The distance between planes is =1.96 \u00c5 \n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.15, Page No 47" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "r = 1.28 # in \u00c5\n", "n = 4\n", "M = 63.5\n", "\n", "#CALCULATIONS\n", "a = (4*r)/(math.sqrt(2)) #in \u00c5\n", "a = a * 10**-8 # in cm\n", "N_A = 6.023*10**23 \n", "Rho = (n*M)/( N_A*((a)**3) ) # in gm/cc\n", "\n", "#RESULTS\n", "print('Density is =%.2f gm/cc ' %Rho)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Density is =8.89 gm/cc \n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.16, Page No 47" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variables\n", "M = 55.85\n", "a = 2.9 # in \u00c5\n", "Rho = 7.87 #in gm/cc\n", "\n", "#CALCULATIONS\n", "a = a * 10**-8 # in cm\n", "N_A = 6.023*10**23\n", "n = (Rho*N_A*((a)**3))/M # atom per unit\n", "\n", "#RESULTS\n", "print('A lattice having =%.2f atom per unit cell is a BCC structure ' %n)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "A lattice having =2.07 atom per unit cell is a BCC structure \n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.17, Page No 47" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "M = 60.0 # in gm/mole\n", "Rho = 6.23 # in gm/cc\n", "n = 4\n", "N_A = 6.023*10**23 \n", "\n", "#CALCULATIONS\n", "a = ((n*M)/(N_A * Rho))**(1.0/3) # in cm\n", "r = (a*math.sqrt(2))/n #radius of atom in cm\n", "r = r * 10**8 # in \u00c5\n", "\n", "#RESULTS\n", "print('Radius of atom is =%.2f \u00c5 ' %r)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radius of atom is =1.41 \u00c5 \n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.18, Page No 47" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "Rho = 5.96 # in gm/cc\n", "M = 50.0\n", "n = 2\n", "N_A = 6.023*10**23 \n", "\n", "#CALCULATIONS\n", "a =((n*M)/(Rho*N_A))**(1.0/3) # in cm\n", "r = (a*math.sqrt(3))/4 # in cm\n", "P_f = (2*(4.0/3)*math.pi*((r)**3))/((a)**3) # packing factor\n", "\n", "\n", "#RESULTS\n", "print('Packing factor is =%.2f ' %P_f)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Packing factor is =0.68 \n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.19, Page No 48" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variables\n", "M = 120.0\n", "n = 2.0\n", "N_A = 6.023*10**23\n", "\n", "#CALCULATIONS\n", "m1 = M/N_A #mass of 1 atom in gm\n", "m2 = n*m1 #mass of unit cell in gm\n", "\n", "#RESULTS\n", "print('Number of unit cell in 20 gms of element is : =%.2f X 10^22 unit cells ' %((20/m2)/(10**22)))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of unit cell in 20 gms of element is : =5.02 X 10^22 unit cells \n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.20, Page No 48" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "Rho = 2.48 # in gm/c.c\n", "n = 4.0 \n", "M = 58\n", "N_A = 6.023*10**23\n", "\n", "#CALCULATIONS\n", "a = ( (n*M)/(Rho*N_A) )**(1.0/3) # in cm\n", "a = a * 10**8 # in \u00c5\n", "r = (a*math.sqrt(2))/n # in \u00c5\n", "r = 2*r # in \u00c5\n", "\n", "#RESULTS\n", "print('The center to center distance between ions is =%.2f \u00c5' %r)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The center to center distance between ions is =3.80 \u00c5\n" ] } ], "prompt_number": 19 } ], "metadata": {} } ] }