{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "

Chapter No 3 : Excess Carriers In Semiconductors

" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.1, Page No 145 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variables\n", "n_o = 10**17 #in/cm^3\n", "n_i = 1.5*10**10 #in /cm^3\n", "\n", "#CALCULATIONS\n", "p_o = ((n_i)**(2))/n_o #in holes/cm^3\n", "\n", "#RESULTS\n", "print('The hole concentration is =%.f in holes/cm^3' %p_o)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The hole concentration is =2250 in holes/cm^3\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.3, Page No 146" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "n_i = 1.5 * 10**10 #in /cm^3 for silicon\n", "N_d = 10**17 #in atoms/cm^3\n", "n_o = 10**17 #electrons/cm^3\n", "KT = 0.0259\n", "\n", "#CALCULATIONS\n", "# E_r - E_i = KT * log(n_o/n_i)\n", "del_E = KT * math.log(n_o/n_i) #in eV\n", "\n", "#RESULTS\n", "print('The energy band for this type material is Ei =%.2f eV' %del_E)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The energy band for this type material is Ei =0.41 eV\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.4 Page No 147" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "K = 1.38*10**-23 #in J/K\n", "T = 27 #in degree C\n", "T = T + 273 #in K\n", "e = 1.6*10**-19 \n", "Miu = 0.17 #in m^2/v-s\n", "Miu1 = 0.025 #in m^2/v-s\n", "\n", "#CALCULATIONS\n", "D_n = ((K*T)/e)*Miu #in m^2/s\n", "D_p = ((K*T)/e)*Miu1 #in m^2/s\n", "\n", "\n", "#RESULTS\n", "print('The diffusion coefficient of electrons is =%.2f X 10^-4 in m^2/s ' %(D_n*(10**4)))\n", "print('The diffusion coefficient of holes is =%.2f X 10^-4 in m^2/s ' %(D_p*(10**4)))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The diffusion coefficient of electrons is =43.99 X 10^-4 in m^2/s \n", "The diffusion coefficient of holes is =6.47 X 10^-4 in m^2/s \n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.5, Page No 147" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "Miu_n = 0.15 #in m^2/v-s\n", "K = 1.38*10**-23 \n", "T = 300 #in K\n", "e = 1.6*10**-19 #in C\n", "\n", "#CALCULATIONS\n", "D_n = Miu_n*((K*T)/e) #in m^2/s\n", "Torque_n = 10**-7 #in s\n", "L_n = math.sqrt(D_n*Torque_n) #in m\n", "del_n = 10**20 #electrons/m^3\n", "J_n = (e*D_n*del_n)/L_n #in A/m^2\n", "\n", "#RESULTS\n", "print('The diffusion length is =%.2f X 10^-4 in m' %(L_n*(10**5)))\n", "print('The diffusion current density is =%.2f X 10^3 in A/m^2 ' %(J_n/(10**3)))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The diffusion length is =1.97 X 10^-4 in m\n", "The diffusion current density is =3.15 X 10^3 in A/m^2 \n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.6 Page No 147" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "Sigma_n = 0.1 #in (ohm-cm)^-1\n", "Miu_n = 1300\n", "q = 1.6*10**-19 #in C\n", "\n", "#CALCULATIONS\n", "n_n = Sigma_n/(Miu_n*q) #in electrons/cm^3 \n", "n_i = 1.5*10**10\n", "p_n = ((n_i)**2)/n_n #in holes/cm^3\n", "p_n = p_n * 10**6 #in holes/m^3\n", "n_n=n_n*10**6\n", "\n", "#RESULTS\n", "print('Concentration of electrons is =%.2f X 10^20 per m^3 ' %(n_n/(10**20)))\n", "print('Concentration of holes is =%.2f X 10^11 per m^3 ' %(p_n/(10**11)))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Concentration of electrons is =4.81 X 10^20 per m^3 \n", "Concentration of holes is =4.68 X 10^11 per m^3 \n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.7 Page No 147" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "L = 100*10**-6 #in m\n", "Miu_e = 0.13 #in m^2/V-s\n", "Torque_h = 10**-6 #in s\n", "Miu_h = 0.05 #in m^2/v-s\n", "V = 12 #in V\n", "\n", "#CALCULATIONS\n", "Torque_n = ((L)**2)/(Miu_e*V) #in s\n", "P = (Torque_h/Torque_n)*(1+(Miu_h/Miu_e))\n", "\n", "#RESULTS\n", "print('Electron transit time is =%.2f X 10^-9 in sec' %(Torque_n*(10**9)))\n", "print('Photoconductor gain is =%.2f ' %P)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Electron transit time is =6.41 X 10^-9 in sec\n", "Photoconductor gain is =216.00 \n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.8, Page No 147" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "q = 1.6*10**-19 #in C\n", "n_i = 2.5*10**13\n", "Miu_n = 3800 #in cm^2/V-s\n", "Miu_p = 1800 #in cm^2/V-s\n", "\n", "#CALCULATIONS\n", "Sigma = n_i*(Miu_n + Miu_p)*q #in (ohm-cm)^-1\n", "Rho = 1/Sigma #in ohm-cm\n", "N_D =4.4*10**22/10**8 #in atoms/cm^3\n", "Sigma_n = N_D * Miu_n*q #in (ohm-cm)^-1 \n", "Rho1 = 1/Sigma_n #in ohm cm\n", "\n", "#RESULTS\n", "print('The resistivity is =%.2f in ohm-cm ' %Rho)\n", "print('The resistivity drops is =%.2f in ohm cm ' %Rho1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The resistivity is =44.64 in ohm-cm \n", "The resistivity drops is =3.74 in ohm cm \n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.9 Page No 148" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#initialisation of variables\n", "n_i = 10**16 #in /m^3\n", "N_D = 10**22 #in /m^3\n", "\n", "#CALCULATIONS\n", "n = N_D #in /m^3\n", "p = ((n_i)**2)/n #in /m^3\n", "\n", "\n", "#RESULTS\n", "print('The concentration of is =%.2f X 10^21 electrons per m^3' %(n/(10**21)))\n", "print('The concentration of is =%.2f X 10^9 holes per m^3 ' %(p/(10**9)))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The concentration of is =10.00 X 10^21 electrons per m^3\n", "The concentration of is =10.00 X 10^9 holes per m^3 \n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.10 Page No 148" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "Rho = 9.6*10**-2 #ohm-m\n", "Sigma_n = 1/Rho #in (ohm-m)^-1\n", "Miu_n = 1300 #in cm^2/V-s\n", "\n", "#CALCULATIONS\n", "Miu_n = Miu_n * 10**-4 #in m^2/V-s\n", "q = 1.6*10**-19 #in C\n", "N_D = Sigma_n/(Miu_n*q) #in atoms/m^3\n", "d = 5*10**22 #in atoms/cm^3\n", "d = d * 10**6 #// in atoms/m^3\n", "R_d = N_D/d #Ratio \n", "\n", "#RESULTS\n", "print('Ratio of donor atom to silicon atoms per unit volume is =%.2f X 10^-8 ' %(R_d*(10**8)))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ratio of donor atom to silicon atoms per unit volume is =1.00 X 10^-8 \n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.11 Page No 148" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "n_i = 1.5*10**10 #in /cm^3\n", "n_n = 2.25*10**15 #in /cm^3\n", "\n", "#CALCULATIONS\n", "p_n = ((n_i)**2)/n_n #in /cm^3\n", "\n", "#RESULTS\n", "print('The concentration of is =%.2f X 10^5 holes per cm^3 ' %(p_n/(10**5)))\n", "print('Donor impurity per cm^3 is =%.2f X 10^15 ' %(n_n/(10**15)))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The concentration of is =1.00 X 10^5 holes per cm^3 \n", "Donor impurity per cm^3 is =2.25 X 10^15 \n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No 3.12 Page No 149" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variables\n", "N_A = 2*10**16 #in /cm^3\n", "N_D = 10**16 #in /cm^3\n", "\n", "#CALCULATIONS\n", "C = N_A-N_D #in /cm^3\n", "\n", "#RESULTS\n", "print('Carrier concentration in holes/cm^3 is =%.2f X 10^16 ' %(C/(10**16)))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Carrier concentration in holes/cm^3 is =1.00 X 10^16 \n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No 3.13 Page No 149" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variables\n", "del_n = 10**15 #in /cm^3\n", "Torque_p = 10*10**-6 #in sec\n", "\n", "#CALCULATIONS\n", "R_G = del_n/Torque_p #in electron hole pairs/sec/cm^3\n", "\n", "#RESULTS\n", "print('The rate of generation of minority carrier is : =%.2f X 10^20 electron hole pairs/sec/cm^3 ' %(R_G/(10**20)))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The rate of generation of minority carrier is : =1.00 X 10^20 electron hole pairs/sec/cm^3 \n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No 3.14 Page No 149" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variables\n", "V = 1/20.0 #in cm/\u00b5sec\n", "V=V*10**6 #in cm/sec\n", "\n", "#CALCULATIONS\n", "E = 10 #in V/cm\n", "Miu = V/E #in cm^2/V-sec\n", "\n", "#RESULTS\n", "print('The mobility of minority charge carrier is =%.f cm^2/V-sec' %Miu)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mobility of minority charge carrier is =5000 cm^2/V-sec\n" ] } ], "prompt_number": 32 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No 3.15 Page No 149" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "q = 1.6 * 10**-19 #in C\n", "N_D = 4.5 * 10**15 #in /cm^3\n", "del_p = 10**21 \n", "e=10 #in cm\n", "A = 1 #in mm^2\n", "A = A * 10**-14 #cm^2\n", "l = 10 #in cm\n", "Torque_p = 1 #in microsec\n", "\n", "\n", "#CALCULATIONS\n", "Torque_p = Torque_p * 10**-6 #in sec\n", "Torque_n = 1 #in microsec\n", "Torque_n = Torque_n * 10**-6 #in sec\n", "n_i = 1.5 * 10**10 #in /cm^3\n", "D_n = 30 #cm^2/sec\n", "D_p = 12 #in cm^2/sec\n", "n_o = N_D #in /cm^3\n", "p_o = ((n_i)**2)/n_o #in /cm^3\n", "l_n = math.sqrt(D_n * Torque_n) #in cm\n", "l_p = math.sqrt(D_p * Torque_p) #in cm\n", "x=34.6*10*8-4 #in cm\n", "e1 = 1.88 * 10**1 #in cm\n", "dnBYdx = del_p * e1 #in cm^4\n", "dpBYdx = del_p *e #in cm^4\n", "\n", "J_P = -(q) * D_p * dpBYdx #in A/cm^2\n", "J_n = q * D_n * dnBYdx #in A/cm^2\n", "\n", "\n", "#RESULTS\n", "print('Hole concentration at thermal equilibrium per cm^3 is =%.1f X 10^5 ' %(p_o/(10**5)))\n", "print('Diffusion length of holes in cm is =%.1f X 10^-3 ' %(l_p*(10**3)))\n", "print('Concentration gradient of holes at distance in cm^4 is =%.f X 10^22 ' %(dpBYdx/(10**22)))\n", "print('Concentration gradient of electrons in per cm^4 is =%.1f X 10^22 ' %(dnBYdx/(10**22)))\n", "print('Current density of holes due to diffusion in A/cm^2 is =%.2f X 10^4 ' %(J_P/(10**4)))\n", "print('Current density of electrons due to diffusion in A/cm^2 is =%.2f X 10^4 ' %(J_n/(10**4)))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Hole concentration at thermal equilibrium per cm^3 is =0.5 X 10^5 \n", "Diffusion length of holes in cm is =3.5 X 10^-3 \n", "Concentration gradient of holes at distance in cm^4 is =1 X 10^22 \n", "Concentration gradient of electrons in per cm^4 is =1.9 X 10^22 \n", "Current density of holes due to diffusion in A/cm^2 is =-1.92 X 10^4 \n", "Current density of electrons due to diffusion in A/cm^2 is =9.02 X 10^4 \n" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No 3.16 Page No 151" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variables\n", "h = 6.626 * 10**-34 #in J-s\n", "q= 1.6*10**-19 #in C\n", "\n", "#CALCULATIONS\n", "h= h/q #in eV\n", "c = 3*10**8\n", "lembda = 5490*10**-10 #in m\n", "E = h*c/lembda #in eV\n", "\n", "#RESULTS\n", "print('The energy band gap is =%.2f eV ' %E)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The energy band gap is =2.26 eV \n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No 3.17 Page No 151" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variables\n", "D_n = 35 #in cm^2/sec\n", "q = 1.6*10**-19 #in C\n", "y2 = 6*10**16 #in /cm^3\n", "y1 = 10**17 #in /cm^3\n", "x2 = 2*10**-4\n", "x1 = 0\n", "\n", "#CALCULATIONS\n", "dnBYdx = (y2-y1)/(x2-x1)\n", "J_n = q*D_n*dnBYdx #in A/cm^2\n", "\n", "#RESULTS\n", "print('The current density is =%.f in A/cm^2' %J_n)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The current density is =-1120 in A/cm^2\n" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No 3.18 Page No 151" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variables\n", "q = 1.6*10**-19 #in C\n", "n_n = 5*10**20 #in /m^3\n", "n_n = n_n * 10**-6 #in /cm^3\n", "Miu_n = 0.13 #in m^2/V-sec\n", "\n", "\n", "#CALCULATIONS\n", "Miu_n = Miu_n * 10**4 #in cm^2/V-sec\n", "Sigma_n = q*n_n*Miu_n #in ohm-cm^-1\n", "Rho = 1/Sigma_n\n", "A = 100 # in \u00b5m^2\n", "A = A * 10**-8 #in cm^2\n", "l = 0.1 #in cm\n", "R = Rho * (l/A) #in ohm\n", "R=R*10**-6\n", "#RESULTS\n", "print('The resistance of the bar is =%.2f in M ohm' %R)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The resistance of the bar is =0.96 in M ohm\n" ] } ], "prompt_number": 36 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No 3.19 Page No 152" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variables\n", "w = 3.0 #in \u00b5m\n", "\n", "#CALCULATIONS\n", "D = w/9 #in \u00b5m\n", "\n", "#RESULTS\n", "print('Depletion width on P side is =%.2f in \u00b5m ' %D)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Depletion width on P side is =0.33 in \u00b5m \n" ] } ], "prompt_number": 37 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No 3.20 Page No 152" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variables\n", "n_i = 1.5*10**16 #in /m^3\n", "n_n = 5*10**20 #in /m^3\n", "\n", "#CALCULATIONS\n", "p_n = ((n_i)**2)/n_n #in /m^3\n", "\n", "#RESULTS\n", "print('The minority carrier density per m^3 is =%.2f X 10^11' %(p_n/(10**11)))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The minority carrier density per m^3 is =4.50 X 10^11\n" ] } ], "prompt_number": 38 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No 3.21 Page No 152" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variables\n", "y2 = 10**14 #in /cm^3\n", "y1 = 0\n", "x1=-0.5 #in \u00b5m\n", "\n", "#CALCULATIONS\n", "x1= x1*10**-4 #in cm\n", "x2=0\n", "dnBYdx = (y2-y1)/(x2-x1) #in /cm^4\n", "q = 1.6*10**-19 #in C\n", "D_n = 25 #in cm^2/sec\n", "J_n = q*D_n*dnBYdx #in A/cm^2\n", "\n", "\n", "#RESULTS\n", "print('The collector current density is =%.f in A/cm^2' %J_n)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The collector current density is =8 in A/cm^2\n" ] } ], "prompt_number": 39 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No 3.22 Page No 153" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variables\n", "h = 6.64*10**-34 ##in J-s\n", "q=1.6*10**-19 #in C\n", "\n", "#CALCULATIONS\n", "h= h/q #in eV\n", "c = 3*10**8 #in m/s\n", "lembda = 0.87*10**-6 #in m\n", "E_g = (h*c)/lembda #in eV\n", "\n", "#RESULTS\n", "print('The band gap in eV is =%.2f ' %E_g)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The band gap in eV is =1.43 \n" ] } ], "prompt_number": 40 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No 3.23 Page No 153" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "alpha = 5*10**4 #in cm^-1\n", "l = 0.46*10**-4 #in cm\n", "hv = 2 #in eV\n", "I_o = 10**-2 #in W\n", "\n", "#CALCULATIONS\n", "I_t = I_o*math.exp(-alpha*l) #in W\n", "A_p = I_o-I_t #absorbed power in W or J/s\n", "c = 1.43\n", "A_E = (hv-c)/hv*A_p # in J/s\n", "e = 1.6*10**-19 #in C\n", "P = A_p/(e*hv) #Perfect quantum efficiency in photon/s\n", "\n", "#RESULTS\n", "print('Total energy absorbed is =%.f X 10^-3 in J/s' %(A_p*(10**3)))\n", "print('Rate of excess thermal energy is =%.2f X 10^-3 in J/s' %(A_E*(10**3)))\n", "print('Perfect quantum efficiency is =%.2f X 10^16 in photon/s' %(P/(10**16)))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Total energy absorbed is =9 X 10^-3 in J/s\n", "Rate of excess thermal energy is =2.56 X 10^-3 in J/s\n", "Perfect quantum efficiency is =2.81 X 10^16 in photon/s\n" ] } ], "prompt_number": 41 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No 3.24 Page No 154" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#initialisation of variables\n", "Mu_p = 500 #in cm^2/v-s\n", "kT = 0.0259\n", "Toh_p = 10**-10 #in sec\n", "p_o = 10**17 #in cm^-3\n", "q= 1.6*10**-19 # in C\n", "A=0.5 #in square meter\n", "del_p = 5 * 10**16 #in cm^-3\n", "n_i= 1.5*10**10 #in cm^-3 \n", "\n", "\n", "#CALCULATIONS\n", "D_p = kT * Mu_p #in cm/s\n", "L_p = math.sqrt(D_p * Toh_p) # in cm\n", "x = 10**-5 #in cm\n", "p = p_o+del_p*e**(x/L_p) #in cm^-3\n", "Eip= math.log(p/n_i)*kT #in eV\n", "Ecp= 1.1/2-Eip #value of E_c-E_p in eV\n", "Ip= q*A*D_p/L_p*del_p*e**(x/L_p) #in A\n", "Qp= q*A*del_p*L_p #in C\n", "\n", "#RESULTS\n", "print('The hole current is : =%.2f X 10^3 in A ' %(Ip*(10**3)))\n", "print('Approximation error')\n", "print('The value of Qp is :=%.2f X 10^-7 in C' %(Qp*(10**7)))\n", "\n", "#Note: There is a calculation error to evalaute the value of hole current hence the value of hole current in the book is wrong\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The hole current is : =8.61 X 10^3 in A \n", "Approximation error\n", "The value of Qp is :=1.44 X 10^-7 in C\n" ] } ], "prompt_number": 42 } ], "metadata": {} } ] }