{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter - 5 : PN JUNCTION DIODE" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 5.1 Pg 102" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "I = 10.72 uA\n" ] } ], "source": [ "from math import exp \n", "I0=2*10**-7\n", "Vf=0.1\n", "I=I0*(exp (40*Vf)-1)\n", "print \"I = %0.2f\"%(I*10**6),'uA'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 5.2 Pg 102" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "VT=25.69 mV\n", "I=5.24 A\n" ] } ], "source": [ "from __future__ import division\n", "from math import exp\n", "I0=1*10**-3\n", "Vf=0.22\n", "T=298\n", "n=1\n", "VT=T/11600\n", "print \"VT=%0.2f\"%(VT*10**3),'mV'\n", "I=I0*(exp (Vf/(n*VT))-1)\n", "print \"I=%0.2f\"%I,\"A\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 5.3 Pg 103" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "value of n = 1.17605641518\n" ] } ], "source": [ "from math import log\n", "from __future__ import division\n", "I1=0.5*10**-3\n", "V1=340*10**-3\n", "I2=15*10**-3\n", "V2=440*10**-3\n", "kTbyq=25*10**-3\n", "a=V1/kTbyq\n", "b=V2/kTbyq\n", "#log(I1/I2)==log(exp((b-a)/n))\n", "n=(a-b)/(log(I1/I2))\n", "print \"value of n =\",n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 5.4 Pg 103" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "I400=10.24 mA\n" ] } ], "source": [ "from __future__ import division\n", "I300=10*10**-6\n", "T1=300\n", "T2=400\n", "I400=I300*(2**((T2-T1)/10))\n", "print \"I400=%0.2f\"%(I400*10**3),'mA'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 5.5 Pg 103" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "VF=0.72 V\n" ] } ], "source": [ "from __future__ import division\n", "rB=2.0\n", "IF=12*10**-3\n", "VF=0.7+IF*rB\n", "print \"VF=%0.2f\"%VF,'V'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 5.8 Pg 104" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "IF=0.50 A\n", "IR=3.33 mA\n" ] } ], "source": [ "from __future__ import division\n", "PD=0.5\n", "VF=1\n", "VBR=150\n", "IF=(PD/VF)\n", "print \"IF=%0.2f\"%IF,\"A\"\n", "IR=(PD/VBR)\n", "print \"IR=%0.2f\"%(IR*10**3),'mA'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 5.9 Pg 104" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "VD=VS=5.00 V\n", "VR= 0\n", "I= 0\n" ] } ], "source": [ "from __future__ import division\n", "R=330\n", "VS=5\n", "VD=VS\n", "print \"VD=VS=%0.2f\"% VD,'V'\n", "VR=0\n", "print \"VR=\",VR\n", "I=0\n", "print \"I=\",I" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 5.10 Pg 105" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "VD= 0\n", "VR= 12 V\n", "I=25.53 mA\n" ] } ], "source": [ "from __future__ import division\n", "VS=12\n", "R=470\n", "VD=0\n", "print \"VD=\",VD\n", "VR=VS\n", "print \"VR=\",VR,\"V\"\n", "I=(VS/R)\n", "print \"I=%0.2f\"%(I*10**3),\"mA\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 5.11 Pg 105" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "I=6.62 mA\n" ] } ], "source": [ "from __future__ import division\n", "VS=6\n", "R1=330\n", "R2=470\n", "VD=0.7\n", "RT=R1+R2\n", "I=(VS-0.7)/RT\n", "print \"I=%0.2f\"%(I*10**3),'mA'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 5.12 Pg 105" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "VR=4.30 V\n", "I=8.43 mA\n" ] } ], "source": [ "from __future__ import division\n", "VS=5\n", "R=510\n", "VF=0.7\n", "VR=VS-0.7\n", "print \"VR=%0.2f\"%VR,\"V\"\n", "I=VR/R\n", "print \"I=%0.2f\"%(I*10**3),\"mA\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 5.13 Pg 105" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "I=3.07 mA\n" ] } ], "source": [ "from __future__ import division\n", "VS=6\n", "VD1=0.7\n", "VD2=0.7\n", "VR=1.5*10**3\n", "I=(VS-VD1-VD2)/VR\n", "print \"I=%0.2f\"%(I*10**3),'mA'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 5.14 Pg 106" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "I=3.21 mA\n" ] } ], "source": [ "from __future__ import division\n", "VS=12\n", "R1=1.5*10**3\n", "R2=1.8*10**3\n", "VD1=0.7\n", "VD2=0.7\n", "I=(VS-VD1-VD2)/(R1+R2)\n", "print \"I=%0.2f\"%(I*10**3),'mA'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 5.15 Pg 106" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "VO= 0 V\n", "VO= 4.3 V\n", "VO= 4.3 V\n", "VO= 4.3 V\n" ] } ], "source": [ "from __future__ import division\n", "V1=0\n", "V2=0\n", "VO=0\n", "print \"VO=\",VO,\"V\"\n", "V1=0\n", "V2=5\n", "VO=V2-0.7\n", "print \"VO=\",VO,\"V\"\n", "V1=5\n", "V2=0\n", "VO=V1-0.7\n", "print \"VO=\",VO,\"V\"\n", "V1=5\n", "V2=5\n", "VO=V2-0.7\n", "print \"VO=\",VO,\"V\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 5.16 Pg 106" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "I= 0.999965 mA\n", "R1= 50\n", "V= 0 mV\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEZCAYAAACEkhK6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXm0VNWV/z+bx4wTKCAgyoyACChBHMBnYgxqB42azmRM\nYrpjOjFDr0532kxir3Sm/nV3OiuJy9aYNnZiNGZwJA5E1EaDIMg8z/OgyCCDwDu/P3ZVXr3nG6rq\n3XvPuffuz1pvUcOtcze1T+3vGfcR5xyGYRiG0RrtfBtgGIZhpAMTDMMwDKMsTDAMwzCMsjDBMAzD\nMMrCBMMwDMMoCxMMwzAMoyxMMAyjESJym4jc7dsOwwgNsX0YhmEYRjlYD8MwDMMoCxMMI7eIyFdF\nZLOI7BOR5SLy7sLr00Tk/sLjASJSJyI3icgGEdklIl9rpryBIrKn5PndIrKj5Pn9IvKlwuNPicjS\nwr3XiMhnSq5bJiJXlzxvX7jv2MLziSLykojsEZHXROTSqL8bw2gKEwwjl4jIcODzwHjn3EnAFcD6\nwttNjdNeDAwD3gN8S0TObnyBc24dsE9ExhVemgzsL7l2MjCz8HgHcHXh3p8C/rMoCMCvgI+UFP0+\nYKdz7jUR6Qc8DvyLc6478BXgtyJyWiX/f8OoBhMMI68cBzoBo0Skg3Nuo3NubeE9aeL6O5xzR5xz\nC4EFwJhmyn0eqBWR01HheRi4VEQGAic55xYAOOeeLAgMzrkXgKdRQQF4AJgqIp0Lzz9aeA3gRuBJ\n59wfC599FpgLXFX5V2AYlWGCYeQS59xq4MvANGCHiDwgIn1a+Mj2kscHgW7NXPc8UAtMAl4oPL8U\nFYMXixeJyJUi8mcReb0wjHUVcGqJbctQ0egKvB/tdQCcBXywMBy1p/DZi4HTy/2/G0a1mGAYucU5\n94BzbhIahB3w/QiKfR4Vi1p0+On/0IB+aeE5ItIJ+C3wA6BXYWjpSRr2bB5Ah6WuAZaW9H42Avc7\n57qX/J3onPtBBLYbRouYYBi5RESGici7C8H7CHAYHaYqu4imXiz0Dg6jQ0fPO+f2AzuB61ExAehY\n+NsN1InIlegcSim/RucuPgv8suT1/wXeLyJXiEiNiHQWkdrC3IZhxIoJhpFXOgHfBXYB24DTgNsK\n7zkaTnw3NQne0gammcBu59yWkucA8wAKIvJF4CHgDbQn8UiDwp3bDrwEXAg8WPL6ZrTX8TVUiDYC\n/4D9lo0E8LpxT0TuBa5GV4CMbuaaHwFXouPGn3TOzU/QRMMwDKOA71bJz4Epzb0pIlcBQ5xzQ4HP\nAHcmZZhhGIbREK+C4Zx7EdjTwiVTgfsK184GThGR3knYZhiGYTTEdw+jNfoBm0qebwbO8GSLYRhG\nrgldMOCdq1EsW6JhGIYH2vs2oBW2AP1Lnp9ReK0BImIiYhiGUQXOuSaXiDdF6D2MR4GbQBOuAW86\n53Y0daFzLtK/ujrH1KmOm292HD/e8PXPftZx1VX6OOr7+v67/fbbvdtQyd+3vuWYNMlx4EDD13/y\nE8ewYY79++379P33m984BgxwbNrU8PUZMxw9ezrWrLHv09dfpXgVDBF5AF1rPlxENonIzSJyi4jc\nAppvB1grIquBu4DPJWXbz34GmzfDnXdCu5JvSQR+9CPYvVvfM/zx8stw993w0EPQrVGijs99Di66\nCL7yFT+2Gcq2beqLhx6CMxrNPr773XDbbXDjjVBX58c+ozK8Dkk55z5SxjW3JmFLKfv2wTe+AU89\nBR07vvP9Dh3g3nvhssvgwx+GHj2SttCoq4Mvfxm+/304vZksSj/8IQwfDp/9LIwd2/Q1Rrx885vw\nyU/Cu97V9Ptf+hL86lf6d+ONiZpmVEHoQ1Je+MEPYMoUGNNcPlJg1Ci47jr43veSsysJamtrfZtQ\nFg8/DMePw8c+1vw1J58Mt9+urVhfpOX7jIMlS+Cxx+BrTZ4eorRrp8L+9a/D0aOtl5nn7zMEMnFE\nq4i4qP4fBw7AgAEwZw4MHNjytRs2wHnnwdq1GpyMZHAOxo+HadPg/e9v+dojR2DQIHjyyZYbAEb0\n3HwzDB6sYtAal10Gn/609TKSRkRwGZr0Tpz77oNLL21dLADOOkt7Iv/93/HbZdTz4ouwfz9cfXXr\n13bqBF/8ovYajeTYsQN+/3u45Zbyrv/qV3V4MQPt10xjPYwS6urg7LN1wnvSpPI+M2eOzmOsWtVw\nctyIj+uvh/e8RydTy2HPHm0ArFkDp54ar22GcscdsHUr3HVXedc7p7+9n/9cFysYyWA9jDYwa5ZO\ncl9ySfmfGT8eunbVVq8RP7t3w4wZ8PGPl/+Z7t3hqqt0YtWIn7o6+J//0cUG5SKiQ1L33BObWUYE\nmGCU8L//q4FIytZbvfaTn9QfiBE/Dz6owf/EEyv73M03a+vViJ9Zs3SZc6Ur0266SYex9u+Pxy6j\n7ZhgFDhyRFfefPSjlX/2xhu1or/1VvR2GQ35xS8q610Uefe74fXXYdGi6G0yGnL//ZU3vECXR190\nETzxRDx2GW3HBKPA9OkwejT079/6tY3p3VvXmT/1VPR2GfWsXQvr18N731v5Z9u1gxtugN/9LnKz\njBKOHoXf/ra6hheojx5+OFqbjOgwwSjwhz9oZa2WD3xAexlGfDzyiC6jbV/ldtPrrjPBiJsXXoAh\nQ6preAFccw0884z11kPFBAPdAPbEE62v6W+Ja6/VMt5+Ozq7jIY88ogGlGq58ELYuRNWr47OJqMh\njzwCU6dW//kePWDiRN03Y4SHCQaak6hfP91XUS19++qywOeei84uo57XX4f58+Hyy6svo107FXbr\nZcSDc/Doo20TDNBGweOPR2OTES0mGERTyQH+6q90LsSIniee0InrLl3aVs5VV8Ef/xiNTUZDFi5U\nUT7nnLaVM2WKzgdaQsLwMMFA8920ZTiqyPveZxPfcfHkk9H46LLLdLPlgQNtL8toyOOPq48qXR3V\nmEGDNNXOa69FY5cRHbkXjM2bYdcuOP/8tpc1bpxuLNu4se1lGfXU1elmvbYMRxU54QRd0TZzZtvL\nMhry7LNwxRXRlHXlldYTDJHcC8aMGdrqjCKtR7t2uuTz6afbXpZRz8KFulv7zDOjKc96gtFz8KD2\n3CZPjqa8K6+04d0QMcGYoXmJouKKKywYRU1UvYsiJhjRM2uW7uyudAd+c1x6qS5ysF3fYZFrwXAu\nHsH4059swi5Knn02Wh+de64mJNy0Kboy807Uv6POnTVP26xZ0ZVptJ1cC8bKlVBToxuNoqJvX11L\nvnRpdGXmmbff1qBx2WXRldmunQ6dWMLI6Iha1EF7Gc8/H22ZRtvItWAUW0VtXdXRmMmTdcer0XZm\nz4Zhw6I/BnfyZAtGUbFnjza+Jk6MtlwTjPDItWA8/3y0LdciJhjR8eKL0U2klmI+io5Zs+CCC/Ro\ngCiZOFEXPFiakHDItWC89BJcfHH05RaDUQbOpvLOrFnx+Ojcc2H7dk0VYrSNWbPiOfSoa1edSH/p\npejLNqojt4KxcaOOjw8aFH3ZAwbo3MiaNdGXnSfq6jRtSxyCUVOj5do8RtuJS9RBh6Vsz0w45FYw\nipU86vkL0DJtjLztLFum+y9OPz2e8s1Hbeftt2HevOjnL4pMmmQ9jJDIrWC89FK8ZwdfcoktCWwr\ncbZcQct++eX4ys8D8+fD4MFw0knxlD9hAsydC8eOxVO+URm5FYy4xl2LXHCBrvAxqiduwTjvPF3+\nfOhQfPfIOnH7qEcPzSS9ZEl89zDKJ5eCsX8/rFgRTf6o5hg9GjZsgH374rtH1ok7GHXpoinp58+P\n7x5ZJ24fgQ53/fnP8d7DKI9cCsYrr+jqi06d4rtHhw56jzlz4rtHltm5U8/AGDky3vtYT7B6nIt/\naBdMMEIil4Ixe3Z8k3SlWDCqnrlzNTVEFEkhW8J8VD2bN+tKtgED4r2PCUY45FIw5s7VFNdxY8Go\neoqCETfmo+op+iiOlYalnHOOitOePfHex2id3ApGksHINvBVzpw5yfho2DB4803bwFcNSf2O2rfX\n+UYb3vVP7gRj506d9B48OP57Fc9vsAOVKsO55IJRu3ba27ReRuUk5SPQxpcNS/knd4Lx6qvaWom7\nGw16DxvyqJytW3XdfVQHJrWG+ahyiqIe50rDUs4/XzcIGn7JnWAk2SoCvZdV9MpIamy8yPnn29La\nSlm/Xs+s6Ns3mfuZYIRBLgUjqVYR6DnfVtErI2lRP+8881GlJO2jQYN0T9OuXcnd03gnuRSMJCv6\nuHHaerWJ7/JJahVbkf79NSfStm3J3TPtvPpqsr8jkfrfkuGPXAnGtm1w+HD868ZL6dtXK/uWLcnd\nM804l9wKqSIi2suwYFQ+STe8wHqCIZArwSi2ipIaGwcLRpWyYYMexJPU2HgRC0bl41z94pEkOe88\nva/hj1wJRtLzF0VsHqN85s3TwJA05qPyWbMGTjwRevVK9r4m6v7JlWC89pq/YGQ9jPJYsEBzcCWN\n9QLLZ8ECrdNJM2yY7qOyHd/+yJVgLFyoR3MmjQlG+SxY4MdHQ4bA7t3wxhvJ3ztt+PJRTQ2MGaMN\nP8MPuRGMffu0dZLEDu/GDB6sraLXX0/+3mlj4UINCknTrp32bEzYW2fBAj8+ApvH8E1uBGPRIhg1\nSlspSVMMRtYyapl9+2DHDm3t+8DGyMvDl6iD3nfhQj/3NnIkGL660UVsUrV1fIo6WDAqh717dfPc\noEF+7n/uuVpPDD/kRjB8topAexgLFvi7fxrwOdQBekqiBaOWWbhQ0437EvVRo2D5cjh61M/9806u\nBMNnD8OCUev4FoxRo2DlSgtGLeG7p961q+7MX7XKnw15JheCUVenwdpnRR850oJRa/gW9a5d4Ywz\n1E9G0/juqYM2vmzo0A+5EIx166BHDzjlFH82FFtGFoyapq4OFi/2KxhgPcHW8N0LBK0jJhh+8CoY\nIjJFRJaLyCoR+WoT79eKyF4RmV/4+0Y19/HdjS5iwah51qyBU0/1K+pgPmqJ48dV1EeP9muHTXz7\no72vG4tIDfBj4HJgCzBHRB51zi1rdOnzzrmpbblXCN1o0MnCxYt9WxEmvoejioweDffd59uKMFm9\nWtOBnHyyXztsSMofPnsYE4DVzrn1zrmjwK+Ba5q4rs2pAkMKRtYyapoQhjrAWq8tEUrDa9Ag3QS7\nd69vS/KHT8HoB2wqeb658FopDrhIRBaIyJMiMrKaG4USjEwwmiekYLRzp24iNBqycKH/4SjQjbDn\nnGO/JR94G5JCxaA15gH9nXMHReRK4A/AsKYunDZt2l8e19bWUltbC8D+/bB9u7/dw6UMGaK27N+v\n2T6NehYt0iDgm5oaXdG2eDFcdJFva8JiyRL40Id8W6EUG1+XXOLbknQxc+ZMZs6cWfXnfQrGFqB/\nyfP+aC/jLzjn9pc8ni4iPxWRHs65d6SIKxWMUpYtg7PP9rfRqJSaGhgxQn94Eyf6tiYcDh6ErVvD\nEHWoD0YmGA1ZulT3qoSArZSqjtLGNMAdd9xR0ed9DknNBYaKyAAR6Qh8CHi09AIR6S2ixx2JyARA\nmhKLlli6VFuMoWDDUu9k+XIYOhTa+2y+lGDzGO/kyBFYv179FAI28e0Hbz9R59wxEbkVeAqoAX7m\nnFsmIrcU3r8LuAH4OxE5BhwEPlzpfZYsMcEInRBF/fe/921FWKxcCQMHQqdOvi1RzjlH641zyZ6g\nmXe8tumcc9OB6Y1eu6vk8U+An7TlHkuXwmc+05YSomX0aHj8cd9WhMWSJeEMdUC9qFswqie0htdp\np0GHDjon2KePb2vyQ+Z3eoc07gq2uqMpQuth9OypQrFzp29LwiG03xFonVm61LcV+SLTgnHggJ6v\nMHCgb0vq6dMHjh3TFNGGEloPQ0SD0bLGW0hzTGg+AhMMH2RaMJYv13OAQ1ghVcSCUUMOHYItW/yc\nhNgSFowaEtqQFJiPfJBpwQixGw26tNYqurJihS6n7dDBtyUNsWBUT3GF1LAmd0D5w3yUPJkWjBBb\nRWA9jFJC9ZGJej2hrZAqYoKRPJkWjNAmU4tYMKonVB+ZqNcTqo9699YMujYfmByZF4wQh6QsGNUT\n4mQqQL9+8NZb8EZF20SzSag+Ks4HWuMrOTIrGMV0E74Oq2+JM8+EPXsswR2E23oV0Z6gCXu4PgIT\njKTJrGCElm6ilHbtNL9V3oPR4cOwaVM46SYaY8FICbWHAeajpMmsYITcKgJrvYKukBo0KLwVUkVs\n6BDefjvMFVJFTDCSJbOCEXKrCKyig/koDaxcCWedFd4KqSLmo2TJrGBYDyN80uCjvAejUBeOFLHF\nCcliguEJaxmFuwejyFln6VGg+/e3fm1WCf13ZJkTkiWTgnHoEGzeHM6BPE0xeLCu4jp0yLcl/li2\nLOxgVFMDw4frAoq8sny5LtAIGWt8JUcmBWPVKt2ZGupkKujqrcGDdeI3jxw9qpOpIYs62LDUihUq\nmiFjgpEcmRSMNFRyyPc8xrp10LcvdO7s25KWyXMwqqvTxleoK6SK5F3UkySTgpGGbjTkOxilRdTz\n7KMtW+Ckk/QvZIYPz29PPWkyKRhpCUZ5bhmlxUd5DkZp8dGAAXruzcGDvi3JPiYYHhkxIr8Tqmnx\n0eDBsHGjbmDLG2nxUfv2ugF01SrflmSfzAmGc+mp6EOHwtq1mnEzb6Rl2LBTJ+jfH9as8W1J8ixf\nno7fEeS7J5gkmROM7dv1R96jh29LWqdrV+jVS1cL5Y20iDrkNxilyUdnn51PHyVN5gQjTZUc8hmM\n9uzRxIN9+vi2pDzyGozS9FvK+36ZpMicYKRlqKNIHgVjxQpdqini25LyyGMwOngQdu7UCeU0kMff\nkQ8yJxhpahVBPiu6+Sh8Vq3SCf+aGt+WlEfRR875tiTbmGB4Jo/ByHwUPmnzUffuOie4datvS7KN\nCYZn8jg+njYf9eqlu5537/ZtSXKkzUeQT2FPmkwJxpEjujs1xGNZm6NfPz2qNU/HtaYtGInkbx4j\nbT6CfDa+kiZTgrF6taakDjnpYGPatdP9GHmp6MeP656GUI9lbY68tV7TKBh5E3UfZEowVqxI1wqp\nInkKRhs2QM+e0K2bb0sqI08+StPm11Ly5CNfZEow0rQztZQ8VfQ0BiLI13DH9u2aRbh7d9+WVEae\nfOSLTAlGWoORCUb45Gm4I60+GjAAtm3L96FkcWOCEQAmGOEzZIgOpx096tuS+Emrj4qHklkSwvjI\njGCkddwV1ObVq3XpZtZJq486ddIVbWvX+rYkftLqI8hX48sHmRGMXbt0+eNpp/m2pHJOOEHHizdt\n8m1J/KQ5GOVljDytc4GQr6FDH2RGMIorpNKSn6gxeajo+/dr4sH+/X1bUh158BGYqBvNkxnBSHOr\nCPLRlV65UvdftEtprcuDj9K4+bWUvIi6L1L6030naW4VQT6CUdoyCTcmDz5K4+bXUoYP14aJJSGM\nBxOMQMhDMEq7j/Iw3JF2H3XvDl266PJaI3pMMALBBCN8evfWs71ff923JfGRdh+BDUvFSWYEY+NG\nXYOdVs48U7OhvvWWb0viI+3BqJiEMMvCntb0OqVk3Uc+yYxg9O+va+XTSk2NTgivXOnbknioq9MN\nVcOG+bakbWQ9GKVd1CEfQ4e+yIxgpL2SQ7aD0ebNcPLJcNJJvi1pG1kORmne/FpKln9HvjHBCIgs\nj71mIRBBtn1UPCAqjZtfSzHBiA8TjIDIckXPkmBk3Udp3fxaZOBAParVkhBGjwlGQOQhGKWdIUNg\n3To4dsy3JdGTFR+1b6+isXq1b0uyR2YEI+0rOyDbm46yEoy6dIE+fVQ0skZWfATZbnz5JDOC0auX\nbwvazsknayLCLVt8WxI9FozCJ+3pdUrJqo9841UwRGSKiCwXkVUi8tVmrvlR4f0FIjKu+bLiszNJ\nsljRDx6EnTv1gJsskEUfQbZEPcur2XziTTBEpAb4MTAFGAl8RERGNLrmKmCIc24o8BngzsQNTZgs\nVvRVqzSZXU2Nb0uiIYuCcfSoHhA1ZIhvS6Ihiz4KgWYFQ0Smi8jAGO89AVjtnFvvnDsK/Bq4ptE1\nU4H7AJxzs4FTRKR3jDZ5J4sVPUstV8imj9au1QOi0rz5tZSij7I4H+iTlnoY9wJPicjXRSSO3JX9\ngNIjgzYXXmvtmjNisCUYshiMTDDCJ2s+OvVUXS21c6dvS7JF++becM79RkSmA98C5orI/YCrf9v9\nRxvvXa72N56daPJz06ZN+8vj2tpaamtrqzLKN1ncGLZiBVx+uW8roqNfPzhwAN58E045xbc10ZA1\nwYD631LvjIxJbNum84FtyZk3c+ZMZs6cWfXnmxWMAkeBA0Bn4EQgylOntwClZ6/1R3sQLV1zRuG1\nd1AqGGlmwADYvl03HXXp4tuaaFixAm691bcV0VGahPCCC3xbEw0rVsD48b6tiJaijy691Lcl0fDA\nAzrP9F//VX0ZjRvTd9xxR0Wfb2kOYwowH+gGjHPO3e6cu6P4V525DZgLDBWRASLSEfgQ8Gijax4F\nbirYMxF40zm3I4J7B0v79jpBvGqVb0uiISv5iRqTtWEp81H4hOCjluYwvg580Dn3Vefcwahv7Jw7\nBtwKPAUsBR50zi0TkVtE5JbCNU8Ca0VkNXAX8Lmo7QiRLFX0bdugc2c92CZLZMlHEEYwipqs+Wjl\nSv/ZnlsakprsXLxrDJxz04HpjV67q9HzDA1mlEeWKnoWAxHo/+nhh31bEQ179sDhw7qDPUtkbYl6\nCL+lZnsYcYuF0TwmGOGTRR9lZfNrkUGDYNMmPSUx7ezfr4ss+jVeR5owmUkNkiWyGIyyxrBhmtzu\n+HHflrSdrPqoY0c9yXLNGt+WtJ1Vq/SAtXaeI7YJRoBkadNRVoNRt256bsTGjb4taTtZ9RFkp/EV\nio9MMALk1FOhQwfYkYH1YKFU9DiwYBQ+WdnXFMKEN5hgBEsWgtGRI5p5d9Ag35bEQxZ8BNnKUtuY\nrPgoFFE3wQiULKzwWL0azjpLe0tZJAvB6PhxzSM1dKhvS+IhCz4C62EYrZCFih5KqygusuCj9es1\ndUbXrr4tiYcsNLycM8EwWiELY68rVmTjJMTmyIJgZF3Ue/aEujrYvdu3JdWzbZumCQph86sJRqBk\nIRhleWwcdMnmG29oIsK0knUfleb9Sish+cgEI1AGDYLNm3XiOK1kvfXarp0eOLRypW9LqifrPoL0\nC0ZIPXUTjEBJ+6ajrCYdbIwFo/BJu4+sh2GURZor+q5dOhxw2mm+LYmXtM81hRSM4iLtPgqp4WWC\nETBpFoys5idqTJpX4ezdq/MvvvMTxU2af0cQVi/QBCNg0lzRQ2oVxUnafTRsWPZFfcgQXT589Khv\nSyrn0CFdJTVggG9LFBOMgEl7MMqLYKxcqUs300ZILdc46dxZe1Hr1vm2pHJWrdIjWdu3djZqQphg\nBEyaBWP58nwEo5NO0r8tTR4cHDZ5mL8oktbfUmg+MsEImF69NHVDGjcd5aWHAekNRuaj8AnNRyYY\nASOSzknVt9/WtN+DB/u2JBksGIVPmn0UUk/dBCNw0rgkcO1aOOMM6NTJtyXJkMZgdPy4JocMIT9R\nEqTRR2BDUkaFpLGi56nlCun00YYNmmepWzffliRDGhteIW5+NcEInDQGo9AqedyYj8KnTx84fBj2\n7PFtSfls3apZhENIOljEBCNwLBiFz4ABsH27rplPC3nzURqTEIboIxOMwEnjpqMQK3qctG+vySJX\nrfJtSfmENpmaBGkUjNB8ZIIROJ07Q9++6dp0lJc9GKWkLRiFNpmaBOajtmOCkQLSVNFff117Q717\n+7YkWdLkI8hfLxDS6aPQGl4mGCkgTRU9L0kHG5MmH+3bp4kHzzjDtyXJkiYfgfUwjCpJU0XPY8sV\n0rVss5h0sF3Ofv1Dh+r5MseP+7akdQ4d0oUUoSQdLJKzKpNOTDDCp+gj53xb0jp59VHXrppuZ/16\n35a0TmhJB4uYYKQAE4zwOfVU3dm+fbtvS1onrz6C9KTaCXE4CkwwUkHfvnDwYDo2HS1dCiNH+rbC\nD2kR9jwLRpp8FNqEN5hgpIK0bDo6ckRTTgwd6tsSP6TBRwDLlsGIEb6t8ENafGQ9DKNNpKGir1ql\nk3QdO/q2xA9p8NGxY5p0MMRglARp8BGYYBhtJA0VPc8tV0iHj9as0SHOrl19W+KHNPiork5tDHFo\n1wQjJZx9dvjLNvM8fwHpCEZ5F/V+/XQfyr59vi1pno0bNeHgSSf5tuSdmGCkhJEjNSCHTN4FY/Bg\nPar18GHfljRP3n3Urp3Osa1c6duS5gnZRyYYKWHoUF0/fuSIb0uaJ++t1w4dNAlhyD3BkINRUoTe\nWw/ZRyYYKaFTJxg4MNyW0bFjOukd4lLAJBk1KuyeYMjBKClGjDAfVYsJRooIeVhq3To4/fT8TqYW\nGTkSlizxbUXTFCdTTdTD9RGYYBgREXJFD7mSJ0nIPYwNG6BHjzAnU5Mk5N+Rc1p/Qh3aNcFIESH3\nMPI+f1Ek5GBkoq4MGaKLE0I8IXHLFj1nvUcP35Y0jQlGirBgFD5DhsCmTWGulAq55Zok7durn0Kc\n+A79d2SCkSKGDdO5grff9m3JO7FgpHTsqCulQtyPsWxZ2MEoSUJtfJlgGJHRqZOm3ghtpVRdnbbW\nTDCUUCe+Qw9GSWKCUR0mGCkjxHmMTZvg5JPhlFN8WxIGIU58hz6ZmjQmGNVhgpEyQqzoNuHdkBB9\ntGULdOmi53YYYfqoKOomGEZkhNjDCL2SJ02IPrL5i4YMHgzbtuk5M6GwYwfU1EDPnr4taR4TjJQR\nYstoyRILRqUMHaoJ5EJaKWWi3pD27dVPy5b5tqSeNPjIi2CISA8ReUZEVorI0yLS5Oi3iKwXkYUi\nMl9EXknazhAJcaXUokUwerRvK8IhxJVSS5bYsGFjQusJmmA0zz8DzzjnhgEzCs+bwgG1zrlxzrkJ\niVkXMJ07w5ln6iE4IVBXpxX9nHN8WxIWoQWjRYvg3HN9WxEWofXW0yDqvgRjKnBf4fF9wLUtXCvx\nm5MuQlo3B0TSAAAQHUlEQVS2uXatTqSefLJvS8IipGBUVweLF1svsDEh+QjSIeq+BKO3c25H4fEO\noHcz1zngWRGZKyJ/m4xp4RPSsk0bjmqakHoY69eroHfv7tuSsAhJMJxLx2+pfVwFi8gzwOlNvPX1\n0ifOOScirpliLnbObRORnsAzIrLcOfdiUxdOmzbtL49ra2upra2tyu40MHIk/P73vq1Q0lDJfRBS\nMEpDy9UHgwfD9u3w1luav8knGzfCCSfEv+x55syZzJw5s+rPi3PNxer4EJHl6NzEdhHpAzznnGsx\n6bKI3A4ccM79exPvOR//D18sXgzXXx/GpOoHPwjXXgsf+5hvS8Li6FFt1e/e7T/l+7e/Dfv3w/e/\n79eOEBk7Fu65B8aP92vHY4/BT38K06cne18RwTlX9rC/ryGpR4FPFB5/AvhD4wtEpKuInFh43A24\nAliUmIUBM3y47q5+6y3fltjYeHN06KAr2kIYlrJeYPOMHg0LF/q2Qm1Ig498Ccb3gPeKyErg3YXn\niEhfEXmicM3pwIsi8howG3jcOfe0F2sDo0MHPQTH95DH4cM6Pp73A3ma49xzYcEC31ZoMLIhqaYZ\nMyYMH6Vl2DC2OYyWcM69AVzexOtbgasLj9cCYxM2LTUUg9EEj4uNly3TceCOHf3ZEDIhBCMT9ZYZ\nMwYef9y3FSrqt93m24rWsZ3eKSWEYGRDHS0Tgo9M1Fum6COfU6CHD+tm3DSIuglGShkzxv/YqwlG\ny5x7rvrIZzCy4aiW6dVLN8Nu2uTPhmXL9ECnTp382VAuJhgpJYRgZILRMiEEI/NR6/juCaZlwhtM\nMFLLaafp2vENG/zZYMGodXwHI/NR6/j2UZp6gSYYKcbnsNSOHXDoEJx1lp/7p4UQgpEJRsv49lFa\nVkiBCUaq8VnR58/XTU9imb5axOfS2u3b4cgRTVZpNI/v+cA0iboJRorxGYzmz4fzzvNz7zThMxgV\nfWSi3jLDhvnbCLttGxw7Bmeckfy9q8EEI8X4DEbz5sG4cX7unSZ87sqfN89EvRyKG2EXL07+3kUf\npUXUTTBSzLBhsHmzn2A0f74JRjl06KCi4SsYmY/Kw9fw7quvpkvUTTBSTPv2mhU16Yq+d6+Ojw8f\nnux908p552nwThobNiyfsWPhtdeSv2/aeoEmGCln/HiYOzfZe772mk7S1dQke9+04sNHe/bArl16\nbrXROuefn7yPQAXj/POTv2+1mGCkHB/ByFquleFL1MeMgXb2Cy+LceN02PDtt5O7565dsG+fnv+e\nFqw6pRxfgmFj4+Vz7rmwahUcPJjcPdM21OGbbt0051aSc03FOaa0THiDCUbqGTlSd3vv35/cPW0y\ntTI6dYIRI5KdazIfVc748TBnTnL3S6Oom2CknA4dtAWb1KTqoUOwZg2cc04y98sKSfcEbdiwct71\nrmR9lLb5CzDByARJVvR587RXk4bMmiGRpGDs26dnRI8cmcz9soL1MFrHBCMDJBmMZs+GCy5I5l5Z\nIkkfzZmjy0Q7dEjmfllhzBhYuVJ70XGze3c6V7GZYGQAE4zwGTVKD8k5cCD+e5mPqiPJuaZXXtHT\nMtO2NN0EIwMMH64b6fbsif9eFoyqo2NH3bsyf37895o9GyZOjP8+WSSpYak//zmdPjLByAA1Nboi\nJu5exo4duss7bd3oUEgiGDlnot4WkpoPNMEwvDJxolbCOJk9W7vRthmsOi68EF56Kd57bNig6/r7\n94/3PlllwoT4f0d1dToklUZRt59+Rrj4Ypg1K957WMu1bRR9FOexusXhqDRtBguJUaO0J71rV3z3\nWL5cT8zs2TO+e8SFCUZGuOgibRkdPx7fPUww2saAARrI162L7x7mo7ZRU6OCG2dPMK3DUWCCkRl6\n9oTevWHJknjKP3ZMx98tGFWPiPYy4gxGL79sPmorl1wC//d/8ZVvgmEEQZzDUgsW6Klgp50WT/l5\nIU4fHTyo50ObYLSNuId3X37ZBMMIgDgr+gsvwOTJ8ZSdJy66KD4fvfyybj7r2jWe8vPChAnaQIpj\nA9/u3boLf+zY6MtOAhOMDGGCET7jxsHatfDmm9GX/cILcOml0ZebN7p108nvOJbXvvCC/k7bt4++\n7CQwwcgQw4dr1totW6Itt64OXnwRJk2Kttw80qGDrvV/+eXoyzZRj464Gl/PP59uUTfByBAiWhmf\ney7acpctg5NP1jkMo+1cdhn86U/RlnnkiC5KuOiiaMvNK5Mnw8yZ0Zc7c6YJhhEQl18Ozz4bbZnW\nco2W97wHZsyItsw5c+Dss+Gkk6ItN6/U1upqtiNHoivzjTd0SXXaUpqXYoKRMYqCEeXmsD/9SX9A\nRjRMmKBniuzeHV2Zzz2X7pZraHTvrokIoxw6fOEF3e2f5izCJhgZY8gQ3Xy0cmU05R07pq3hK66I\npjxDA8akSdEOHT71lPkoaqLurc+YocORacYEI2OIRFvR58zRuYs+faIpz1Ci9NHevboM1IYNo+W9\n741WMKZPhylToivPByYYGeQ974muoj/1FLzvfdGUZdQTpY9mzNBVPV26RFOeoVx4ISxdGs2xAatX\n68bKMWPaXpZPTDAyyOWX63BHFBN2JhjxcM45cPgwrFjR9rLMR/HQqZMKcRQLFIq9i7QnhTTByCC9\neunGo7aOkb/+uuamuuSSaOwy6hGBqVPh0UfbVo5z8Mc/mmDExdSp8MgjbS9n+nS48sq2l+MbE4yM\ncs01ba/ojz2m47idO0djk9GQKHz02ms6iT5iRDQ2GQ2ZOhWeeAKOHq2+jLfe0mSGl18enV2+MMHI\nKMXWa11d9WX87ndw3XXR2WQ05LLLYPFi2Lmz+jJ++1u4/vr0D3WESr9+uvLwxRerL2P6dE022L17\ndHb5wgQjo5x9NpxwArz6anWf379fd6VefXWkZhkldOqkPbjHH6++DBP1+LnmGvjDH6r//G9+Ax/8\nYHT2+MQEI8PccAM8+GB1n33ySU0zccop0dpkNOSGG+CBB6r77LJlKuzvele0NhkNue467clVczjZ\nwYO6KOHaa6O3ywcmGBnmxhvhl7/UzXeV8otfwMc+Fr1NRkOmTtWsqNUkjLz/fvjQh+yM9bgZMUL3\nIVWzWuqJJ2D8+HQex9oUVtUyzIgR0L9/5RV961ZNiXD99fHYZdTTpYt+z7/6VWWfO35cRf1Tn4rH\nLqMhN92k33el3HsvfPKTkZvjDROMjPPxj8PPf17ZZ+6/X4OYHcSTDDfdpD6qJP/X00/rhOyoUfHZ\nZdTzkY/oXNPeveV/ZtMmeOWVbDW8TDAyzsc/rsFl8+byrj9+HO6+Gz796XjtMuqZNEnzf1Wy8/uu\nu+Dmm+OzyWhIz5668a6Sxtc998CHP5ytHfjiokxr6gkRcVn4f8TFl76klfZ732v92ocfhv/8z3jP\nNDbeyb336nf/5JOtX7t8uWamXbfOeoFJMnu2CsCqVa2fmPfWWzBwoO6/GDYsGfuqQURwzpW9KNt6\nGDngy1/W1k5rx4I6B9//PvzjPyZjl1HPRz8K8+ZpEsHW+Ld/g89/3sQiaS64QIcBf/3r1q+9+24V\n9ZDFohq8CIaIfFBElojIcRE5r4XrpojIchFZJSJfTdLGLDFwIHzgA/Cv/9rydQ89pENSU6cmY5dR\nT+fO8I1vwFe+0vJcxqJFugP/1luTs82o5zvfUT8dPtz8NW++qb35r389ObuSwlcPYxHwAeCF5i4Q\nkRrgx8AUYCTwERGxBAhV8u1v6/jrsmVNv793L/zTP8FNN820ZZoRMrOCcz5vuUUnSpvbJFZXB1/4\nAnzzm9CjRzT2pY1Kvs84mDwZxo3TnnhzfPOb2ugaOzY5u5LCS2hwzi13zrV2xM8EYLVzbr1z7ijw\na+Ca+K3LJr17w3e/C3/91zq+WopzGqyuvhrefHOmF/uySiUBrkMHncv47Gdhw4Z3vv+d76ho/N3f\nRWdf2vAtGAA//jHceaeeoNeYRx/Vv+9+N3m7kiDktmQ/YFPJ882F14wq+Zu/0Zw2U6bAjh362qFD\n8JnPaID693/3a5+hu+u/8Q3NM7V0qb5WVwc/+IGOi//qV61PuBrx0q+f7sm44YaGK9t+9zv9jT34\nIJx6qj/74iS2qicizwCnN/HW15xzj5VRhC17ihgRXY75rW/ppr4xYzQo1dZqiuwsLf9LM1/4guYB\nmzxZc4Jt3Qp9+8Lzz+vph4Z/rrhCU7p86lN6nMDRo5oG5LHHdHI8q3hdVisizwH/4Jyb18R7E4Fp\nzrkphee3AXXOuXeMHoqIiYthGEYVVLKsNoTObXPGzgWGisgAYCvwIeAjTV1YyX/YMAzDqA5fy2o/\nICKbgInAEyIyvfB6XxF5AsA5dwy4FXgKWAo86JxrZo2PYRiGETeZ2OltGIZhxE/Iq6RaxTb2RYuI\nrBeRhSIyX0Re8W1P2hCRe0Vkh4gsKnmth4g8IyIrReRpEbETRsqgme9ymohsLtTP+SIyxaeNaUJE\n+ovIc4UN04tF5IuF1yuqn6kVDNvYFwsOqHXOjXPOTfBtTAr5OVofS/ln4Bnn3DBgRuG50TpNfZcO\n+I9C/RznnPujB7vSylHg751zo9CpgM8X4mVF9TO1goFt7IsLW0BQJc65F4E9jV6eCtxXeHwfkJGz\n1+Klme8SrH5WhXNuu3PutcLjA8AydF9bRfUzzYJhG/uixwHPishcEflb38ZkhN7OucI2SXYAvX0a\nkwG+ICILRORnNrxXHYWVp+OA2VRYP9MsGDZbHz0XO+fGAVeiXdZJvg3KEoUc/FZvq+dOYCAwFtgG\nWG6CChGRE4DfAl9yzu0vfa+c+plmwdgC9C953h/tZRhV4pzbVvh3F/B7dNjPaBs7ROR0ABHpA+z0\nbE9qcc7tdAWAe7D6WREi0gEVi/udc8UUlxXVzzQLxl829olIR3Rj36OebUotItJVRE4sPO4GXIFm\nFTbaxqPAJwqPPwE0k4vWaI1CQCvyAax+lo2ICPAzYKlz7oclb1VUP1O9D0NErgR+CNQAP3POZTRH\nZPyIyEC0VwGaAeCX9n1Whog8AFwKnIaOB38LeAR4CDgTWA/8tXOulaOsjCa+y9uBWnQ4ygHrgFtK\nxt+NFhCRS9DjJBZSP+x0G/AKFdTPVAuGYRiGkRxpHpIyDMMwEsQEwzAMwygLEwzDMAyjLEwwDMMw\njLIwwTAMwzDKwgTDMAzDKAsTDMOImEIq6bUi0r3wvHvh+Zm+bTOMtmCCYRgR45zbhOY9+l7hpe8B\ndznnNvqzyjDajm3cM4wYEJH2wKvouQ6fBsY65477tcow2kZ73wYYRhZxzh0TkX8CpgPvNbEwsoAN\nSRlGfFwJbAVG+zbEMKLABMMwYkBExgKXAxcCf19MIW0YacYEwzAippBK+k70kJpNwL8B/8+vVYbR\ndkwwDCN6/hZY75ybUXj+U2CEnWBopB1bJWUYhmGUhfUwDMMwjLIwwTAMwzDKwgTDMAzDKAsTDMMw\nDKMsTDAMwzCMsjDBMAzDMMrCBMMwDMMoCxMMwzAMoyz+P+9ogKfj3aWWAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from __future__ import division\n", "from numpy import arange,pi,sin\n", "%matplotlib inline\n", "from matplotlib.pyplot import plot,show,xlabel,ylabel,title\n", "R=20*10**3\n", "I=(R-0.7)/R\n", "print \"I=\",I,\"mA\"\n", "rj=50\n", "rB=1\n", "re=rB+rj\n", "R1=(R*re)/(re+R)\n", "print \"R1=\",R1\n", "V=10*(re/(re+1000))\n", "print \"V=\",V,'mV'\n", "i=arange(0,6*pi,0.01)\n", "y=[]\n", "for x in i:\n", " y.append(sin(x))\n", "plot(i,y)\n", "xlabel(\"X\")\n", "ylabel(\"Y\")\n", "title(\"sin wave\")\n", "show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }