{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter -24 : FREQUENCY RESPONSE OF BJT AND JFET AMPLIFIERS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 24.1 Pg 685" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "G=13.01 dB\n" ] } ], "source": [ "from __future__ import division\n", "from math import log10\n", "Pi=5#\n", "Po=100#\n", "G=10*log10(Po/Pi)#\n", "print 'G=%0.2f dB'%G" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 24.2 Pg 685" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "G=23.01 dB\n" ] } ], "source": [ "from __future__ import division\n", "from math import log10\n", "Pi=5*10**-3#\n", "Po=1#\n", "G=10*log10(Po/Pi)#\n", "print 'G=%0.2f dB'%G #ans given in the book is wrong" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 24.3 Pg 686" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "G=6.99 dB\n" ] } ], "source": [ "from __future__ import division\n", "from math import log10\n", "Pi=20*10**-6#\n", "Po=100*10**-6#\n", "G=10*log10(Po/Pi)#\n", "print 'G=%0.2f dB'%G" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 24.4 Pg 687" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "G=43.98 dB\n" ] } ], "source": [ "from __future__ import division\n", "from math import log10\n", "Po=25#\n", "G=10*log10(Po/(1*10**-3))#\n", "print 'G=%0.2f dB'%G" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 24.5 Pg 688" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "G=6.02 dB\n" ] } ], "source": [ "from __future__ import division\n", "from math import log10\n", "V2=100#\n", "V1=25#\n", "G=10*log10(V2/V1)#\n", "print 'G=%0.2f dB'%G" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " ## Ex 24.8 Pg 689" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "f1=318.31 HZ\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEPCAYAAACtCNj2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGXlJREFUeJzt3Xu0nXV95/H3VzCWWNRVnBaIWXJTGahEoGXAajmVkFIH\nFYrIRXQchGnNKBSVYshaNUiDcp8xEApVQSWJQwEdIBKJ1ROsUyBGRANESSLtCSowywQNmjGY7/zx\nPGdnc9g5OZe997Mv79daWezr2d8NrHzOc/l9nshMJEkCeFHVA0iSOoehIEmqMRQkSTWGgiSpxlCQ\nJNUYCpKkmo4MhYg4LiLWRMRjEXFB1fNIUr+ITlunEBG7AD8EZgJPACuB0zLz0UoHk6Q+0IlbCkcA\nazPz8czcCnwJeEfFM0lSX+jEUJgGDNXd31A+JklqsU4Mhc7anyVJfWTXqgdo4Alget396RRbCzUR\nYXBI0gRkZoz2fCduKXwHeE1E7BMRU4BTgDtGvigze/bPxz/+8cpn8Pv5/frx+/Xyd8sc2+/SHbel\nkJnPRcQHga8BuwCfTc88kqS26LhQAMjMu4G7q55DkvpNJ+4+6nsDAwNVj9BSfr/u1svfr5e/21h1\n3OK1sYiI7Ma5JalKEUF24YFmSVJFDAVJUo2hIEmqMRQkSTWGgiSpxlCQJNUYCpKkGkNBklRjKEiS\nagwFSVKNoSBJqjEUJEk1hoIkqcZQkCTVGAqSpBpDQZJUYyhIkmoMBUlSjaEgSaoxFCSpD4z1svaG\ngiT1sG3b4NZb4fDDx/Z6Q0GSetDWrfCFL8DBB8Pll8O8eWN7364tnUqS1FZbtsBNN8Gll8I++8CC\nBXDMMRAxtvcbCpLUAzZvhhtugCuvhDe8ARYtgje+cfw/x1CQpC62aVOxNbBgAQwMwNKlRShMlMcU\nJKkLPfUUzJkD++8P69bBvffCLbdMLhDAUJCkrjI0BOeeCwceCM88A6tWFccQDjywOT/fUJCkLrB2\nLZx1FsyYAVOmwMMPw8KFxcHkZjIUJKmDrV4Np58ORx0F06bBY48Vp5jutVdrPs9QkKQOtHIlnHAC\nzJxZbB2sWwcXXQR77NHaz/XsI0nqEJnFAeP582HNGjj/fFi8GKZObd8MhoIkVSwT7r4bLrkEnnyy\nOKvojDOKYwftZihIUkW2bYPbby/C4Lnn4MIL4eSTYZddqpvJUJCkNtu6FZYsgU9+El72sqKX6Pjj\n4UUdcJS340IhIuYBZwFPlw/Nycxl1U0kSc0x2V6idui4UAASuCozr6p6EElqhmefheuvn3wvUTt0\nYigAdFBuStLEbNoE11xTbBEcffTke4naoQP2YDX0oYh4KCI+GxGvqHoYSRqP+l6itWthxYrm9BK1\nQyVbChGxHNizwVNzgeuAT5T3LwauBN4/8oXz6q4YMTAwwMDAQLPHlKRx2bChWG38xS/CqacWvUTN\nrqEYj8HBQQYHB8f1nsixXrizAhGxD3BnZr5+xOPZyXNL6i9r1xYHj2+/Hc48Ez784dbVUExGRJCZ\no+6e77jdRxFR/6/yROAHVc0iSaNZvRre/e6il2jvveFHP2ptL1E7dOKB5ksj4g0UZyH9GPiriueR\npOdZubKoorjvPjjvPLjuumK9QS/o6N1HO+LuI0nt1qiX6KyzYLfdqp5s7May+6gTtxQkqWNkwrJl\nRRhU3UvUDoaCJDXQib1E7WAoSFKdTu4lagdDQZLY3kt02WXw6ld3Zi9ROxgKkvrayF6im2/u3F6i\ndjAUJPWlbuwlaoc+2UsmSYVu7iVqB0NBUl/YsAHOPRcOPBB+8Yuil+imm4r72s5QkNTT1q6Fs8+G\nGTOKtQUPPwzXXlttUV0nMxQk9aRe7CVqB0NBUk9ZuRJOOAFmzoRDDoF16+Cii2CPPaqerDt49pGk\nrteol2jJku7qJeoUhoKkrpUJd99dVFH0Qy9ROxgKkrpOv/YStYOhIKlr9HsvUTsYCpI63nAv0aWX\nFqeS9msvUTsYCpI61ubNcMMN23uJFi3q716idjAUJHWcTZuKrYEFC2BgwF6idnJPnKSOUd9LtG5d\ncZqpvUTtZShIqtzQ0PZeomeesZeoSoaCpMqsXQtnnfX8XqKFC+0lqpKhIKntVq+G008veommTYPH\nHrOXqFMYCpLapr6XaMYMe4k6kWcfSWqpRr1EixfD1KlVT6ZGDAVJLWEvUXcyFCQ1lb1E3c1QkNQU\n9hL1BkNB0qRs2QI33giXXWYvUS8wFCRNyObNcP31cNVV9hL1EkNB0rhs3AjXXGMvUa9yb5+kMRnu\nJTrgAHuJepmhIGlUQ0Nwzjn2EvULQ0FSQ/W9RC95ib1E/cJQkPQ8w71ERx5pL1E/MhQkAS/sJVq/\n3l6iflRJKETEyRHxcET8NiIOG/HcnIh4LCLWRMSsKuaT+kUmDA7CrFlw0knF+oL16+GCC4oFaOo/\nVZ2S+gPgROD6+gcj4iDgFOAgYBrw9Yh4bWZua/+IUu8a7iWaP3/7WUX2EgkqCoXMXAMQL1zy+A5g\nSWZuBR6PiLXAEcB97Z1Q6k32EmlnOm3x2t48PwA2UGwxSJoEe4k0Vi0LhYhYDuzZ4KkLM/POcfyo\nbNJIUt+xl0jj1bJQyMxjJ/C2J4DpdfdfVT72AvPmzavdHhgYYGBgYAIfJ/Ume4kEMDg4yODg4Lje\nE5nV/SIeEd8EPpqZq8r7BwGLKY4jTAO+DhyQI4aMiJEPSeKFvURz5sChh1Y9lTpFRJCZo24nVnVK\n6okRMQQcCSyNiLsBMvMR4BbgEeBuYLZ/+0s7t6NeIgNB41XplsJEuaUgFYaGitXGN98Mp54Kf/u3\n1lBoxzp2S0HS5NT3Ek2ZYi+RmsdQkLpIo16iK66wl0jNYyhIXcBeIrVLpy1ek1TKhBUritXHa9bA\n+efD4sUwdWrVk6mXjSkUIuI/AvsA24B/G66pkNR8I3uJPvYxeM977CVSe+wwFCJiX+A84K0UC8h+\nAgSwV0S8CrgLuDozH2/DnFLPs5dInWCHp6RGxC3APwKDZUFd/XMvBv4MOCsz39XyKV84m6ekqmeM\n7CWaO9deIrXGWE5JdZ2CVJGRvURz59pLpNYaSyiMekwhIl4NPJuZ/zcijgLeBKzNzC83cU6pr9hL\npE422jGFvwP+S3l7CTATGATeGhEDmXluWyaUesSmTUUn0XAv0V13WUOhzjPalsJpFFdAmwr8O7Bn\nZj4bEbsCD7VjOKkXPPUUXH013HADvO1tRS/RgQdWPZXU2GiHsrZk5v/LzI0Uu4yeBcjM54DftGU6\nqYsNDcE55xQB8MwzsGoV3HSTgaDONtqWwssj4i8pTkMdvs3w/ZZPJnWptWvhU58qTi8988yil8ga\nCnWL0ULhXuBtDW4DrGjZRFKXWr26WGOwfDnMnl30EllDoW7jKanSJK1cWaw+vu8+OO88+MAHivUG\nUqeZ1CmpEfERRrk+cmZeNYnZpK6WWRwwnj/fXiL1ltF2H+1OEQqvA/4YuIPieMLxwAOtH03qPMO9\nRJdcAk8+aS+Res9Odx9FxLeAt2bmL8v7uwNfzcw3t2G+Hc3k7iO1VX0v0dat23uJdrVnWF1k0iua\nS78P1HcfbS0fk3reyF6iefPsJVJvG0sofAF4ICJup9h9dALw+ZZOJVVsy5ZiTcGllxa9RAsW2Euk\n/jCms48i4nDgzRTHGO7NzAdbPdhO5nH3kVpiZC/R3Ln2Eql3TPbso92HjyNk5ipg1WivkbqZvURS\nYbTdR1+OiB8C/xv4Tmb+HCAifo/ibKQTgNdQFOVJXcleIun5dni4LDNnArcB7wK+HRHPRMQzwLeB\ndwL/q3yN1HXsJZIaG/VAc2Z+A/hGm2aRWs5eIml0Oz2xLiLujIjTI+Kl7RhIaoXVq+H00+HII2Hv\nvYteoiuuMBCkkcZytvWVFGcePRIRt0XEOyPid1o8l9QUK1fCCSfAzJkwYwasXw+f+IRFddKOjLkQ\nr7y4zp8BZwPHZWZllV+ekqrRNOolev/77SWSmrWimYjYDXg7xUHnw3DxmjqQvUTS5O00FCLiFuA/\nAcuAa4HngFNbPJc0ZvYSSc0zlkK8Pwc2UmwlnAz8GLgtMxe0frwdzuTuI72gl2juXHuJpNFMdkXz\n64DTgFOAp4F/ogiRgWYOKY2XvURS64y2gf0ocBfw55n57wAR8eG2TCU1sHlzsfL4yiuLXqJFi+wl\nkppttA3tvwR+DdwbEf8QEcdQtKRKbbVpE1x8Mey3X3HJy7vugqVLDQSpFUarufhKZp4C/CHwLeA8\n4D9ExHURMatdA6p/PfUUzJkD++8P69YVp5necotFdVIr7fSQXGZuzsxFmXk8MB14EPhYyydT3xoa\ngnPPtZdIqsK4ztPIzJ9n5g2Z+ZbJfGhEnBwRD0fEbyPisLrH94mIX0fEg+WfhZP5HHWXtWvhrLOK\nlccvfnHRS7RwYXEwWVJ7VHUm9w+AE4HrGzy3NjPdQdBHVq8u1hjccw/Mnl30EllDIVWjkjO6M3NN\nZv6ois9W56jvJTrkEHuJpE7Qict89i13HQ1GxJuqHkbNlQkrVsCsWXDSScX6gvXri0qKl1XWpiVp\nWMt2H0XEcmDPBk9dmJl37uBtPwGmZ+bG8ljDVyLiYC/52f0yYdmyoqTOXiKpc7UsFDLz2Am85zfA\nb8rb342IdRSX/PzuyNfOmzevdntgYICBgYGJjqoWspdIqs7g4CCDg4Pjes+Yq7NbISK+CXw0M1eV\n918JbMzM30bEfsC9wB9m5qYR77P7qMPZSyR1nqZVZzdbRJwIfBp4JbA0Ih7MzL8AjgYuioitwDbg\nr0YGgjqbvURSd6t0S2Gi3FLoPCN7iebOtYZC6jQdu6Wg3rFpU7E1sGABDAwUvUTWUEjdyz28mhB7\niaTeZChoXIaG4Jxz7CWSepWhoDGp7yWaMsVeIqlXGQoa1erVcPrpcNRRMG1a0Ut0xRWw115VTyap\nFQwFNVTfSzRjRnHc4KKL7CWSep1nH6kmszhgPH8+rFkD558PixfD1KlVTyapXQwFkQl3311UUdhL\nJPU3Q6GP1fcSPffc9l6iXXapejJJVTEU+tDIXqJ58+wlklQwFPqIvUSSdsZQ6AObN8P118NVVxW9\nRIsW2UskqTFDoYeN7CVaurQIBUnaEfci96Ad9RIZCJJ2xlDoIfW9RL/4hb1EksbPUOgB9b1EL3lJ\n0Ut07bX2EkkaP0Ohiw33Eh155PZeossvt5dI0sQZCl1oZC/R+vX2EklqDs8+6hKZsGJFsfp4uJdo\nyRLYbbeqJ5PUSwyFDjfcSzR/Pjz9dNFLdMYZ9hJJag1DoUPZSySpCoZCh7GXSFKVDIUOsWUL3Hgj\nXHaZvUSSqmMoVKy+l+jQQ4uL2hx1VNVTSepXhkJFNm6Ea66xl0hSZ3FPdZsN9xIdcIC9RJI6j6HQ\nJvYSSeoGhkKL2UskqZsYCi0y3Et01FH2EknqHoZCk43sJVq3zl4iSd3Ds4+aILM4YDx/vr1Ekrqb\noTAJw71El1xSnFVkL5GkbmcoTIC9RJJ6laEwDvYSSep1hsIYbNlSrCm49FLYd99iJfJb3mIvkaTe\nYyiMwl4iSf2mkh0fEXF5RDwaEQ9FxO0R8fK65+ZExGMRsSYiZlUx36ZNcPHFsN9+cP/9RS/RXXcZ\nCJJ6X1V7w+8BDs7MGcCPgDkAEXEQcApwEHAcsDAi2jbjcC/R/vvbSySpP1USCpm5PDO3lXfvB15V\n3n4HsCQzt2bm48Ba4IhWzzM0BOeeay+RJHXCeTNnAl8tb+8NbKh7bgMwrVUfXN9LNGWKvUSS1LID\nzRGxHNizwVMXZuad5WvmAr/JzMWj/Khs9OC8efNqtwcGBhgYGBjzbKtXF2sMli+H2bOLXiJrKCT1\nmsHBQQYHB8f1nshs+Hduy0XE+4CzgWMyc0v52McAMvNT5f1lwMcz8/4R782JzL1yZVFFcd99cN55\n8IEPFOsNJKkfRASZOerJ9FWdfXQccD7wjuFAKN0BnBoRUyJiX+A1wAOT+axMWLECZs2Ck04qrnv8\n4x/DBRcYCJI0UlXrFBYAU4DlUawA+9fMnJ2Zj0TELcAjwHPA7AltEmAvkSRNRGW7jyZjtN1H9hJJ\nUmNj2X3UMyua7SWSpMnr+lCwl0iSmqdrQ+HZZ4teoiuvtJdIkpqla0Nhv/3g6KOLXiJrKCSpObr2\nQPOjj6Y1FJI0DmM50Ny1odCNc0tSlTp28ZokqTMZCpKkGkNBklRjKEiSagwFSVKNoSBJqjEUJEk1\nhoIkqcZQkCTVGAqSpBpDQZJUYyhIkmoMBUlSjaEgSaoxFCRJNYaCJKnGUJAk1RgKkqQaQ0GSVGMo\nSJJqDAVJUo2hIEmqMRQkSTWGgiSpxlCQJNUYCpKkGkNBklRjKEiSagwFSVJNJaEQEZdHxKMR8VBE\n3B4RLy8f3ycifh0RD5Z/FlYxnyT1q6q2FO4BDs7MGcCPgDl1z63NzEPLP7OrGa9ag4ODVY/QUn6/\n7tbL36+Xv9tYVRIKmbk8M7eVd+8HXlXFHJ2q1//H9Pt1t17+fr383caqE44pnAl8te7+vuWuo8GI\neFNVQ0lSP9q1VT84IpYDezZ46sLMvLN8zVzgN5m5uHzuJ8D0zNwYEYcBX4mIgzPzl62aU5K0XWRm\nNR8c8T7gbOCYzNyyg9d8E/hIZn53xOPVDC1JXS4zY7TnW7alMJqIOA44Hzi6PhAi4pXAxsz8bUTs\nB7wGWD/y/Tv7UpKkialkSyEiHgOmAD8vH/rXzJwdEScBFwFbgW3A32Xm0rYPKEl9qrLdR5KkztMJ\nZx+NS0QcFxFrIuKxiLig6nmaKSI+FxFPRsQPqp6lFSJiekR8MyIejojVEXFO1TM1S0T8TkTcHxHf\ni4hHIuKTVc/UChGxS3l24J1Vz9JsEfF4RHy//H4PVD1Ps0XEKyLi1nLh8CMRcWTD13XTlkJE7AL8\nEJgJPAGsBE7LzEcrHaxJIuLNwGbgC5n5+qrnabaI2BPYMzO/FxG/C6wCTuih/35TM/NXEbEr8C/A\nRzPzX6qeq5ki4sPA4cDumfn2qudppoj4MXB4Zv58py/uQhHxeWBFZn6u/H/0pZn5zMjXdduWwhEU\nK54fz8ytwJeAd1Q8U9Nk5reAjVXP0SqZ+bPM/F55ezPwKLB3tVM1T2b+qrw5BdiF7cfMekJEvAp4\nK/AZoFdP9ujJ71VWCb05Mz8HkJnPNQoE6L5QmAYM1d3fUD6mLhMR+wCHUqxo7wkR8aKI+B7wJPDN\nzHyk6pma7GqKswa37eyFXSqBr0fEdyLi7KqHabJ9gacj4saI+G5E/GNETG30wm4Lhe7Z16UdKncd\n3QqcW24x9ITM3JaZb6CobfnTiBioeKSmiYjjgacy80F69Ldp4E8y81DgL4D/Xu7O7RW7AocBCzPz\nMOBZ4GONXthtofAEML3u/nSKrQV1iYh4MXAbcHNmfqXqeVqh3CxfCvxR1bM00RuBt5f73ZcAb4mI\nL1Q8U1Nl5k/Lfz4NfJlid3Wv2ABsyMyV5f1bKULiBbotFL4DvKas2J4CnALcUfFMGqOICOCzwCOZ\n+T+qnqeZIuKVEfGK8vZuwLHAg9VO1TyZeWFmTs/MfYFTgW9k5nurnqtZImJqROxe3n4pMAvombMA\nM/NnwFBEvLZ8aCbwcKPXVrKieaIy87mI+CDwNYoDeZ/tlTNXACJiCXA0sEdEDFEs3rux4rGa6U+A\nM4DvR8TwX5hzMnNZhTM1y17A5yPiRRS/bH0xM/+54plaqdd25f4B8OXi9xZ2BRZl5j3VjtR0HwIW\nlb9QrwP+a6MXddUpqZKk1uq23UeSpBYyFCRJNYaCJKnGUJAk1RgKkqQaQ0GSVGMoqOdFxDllVfAX\nGzz3+oj4XHn7fRGxoP0TvlC5QHPUxVMR8QcR8dV2zaT+0FWL16QJ+gDFtcB/0uC584HhIOiqRTuZ\n+WREbIyIw0Zex1yaKLcU1NMi4h+A/YBlEfE3I557CXBkXR9M/XP7RMQ3IuKhiPh6REwvH98/Iu4r\nL8by9xHxywbvfWlELC0vuPODiHhX+fgfR8S3y8fvj4jfLT/n3ohYVf45qsHP2yUiLo+IB8p5/lvd\n03cAp03qX5JUx1BQT8vMvwZ+Agw06Fs6lOKiTY0sAG7MzBnAIuDT5eP/E7g6Mw/h+TXu9Y4DnsjM\nN5QXS1pWVgt8CTinbFI9Bvg1Rc32sZl5OEWn0Kcb/Lz3A5sy8wiKkrazy+pxgAeAP93R95fGy1BQ\nP3s18NMdPHcksLi8fTPwprrH/6m8vWQH7/0+cGxEfCoi3pSZvwBeB/w0M1dBcZGhzPwtxQV5PhMR\n3wduAQ5q8PNmAe8t+6LuA34POKB87qfAPjv7otJYeUxB/SwZ/doAE7puQGY+FhGHAv8Z+PuI+GeK\nKuZGzqMIi/eUl5vdsoPXfTAzl+9gxq46FqLO5paC+tm/AXvW3a8Pgf9DsTsH4N3AveXt+4B3lrdP\npYGI2AvYkpmLgCvYvptqr4j4o/I1u5ch8DLgZ+Vb30vR/jvS14DZ5XV1iYjX1l01a6/ye0hN4ZaC\n+sGOfpN+iGK3Tv3rhl/7IeDGiDgfeIrtNcN/A9wcERdS/GXd6Dq3rwcuj4htwFbgrzNza0ScAiwo\nr7fwK4pO+4XAbRHxXmAZUH8luuFZPkOxi+i75TUpngJOKJ87gu2BJU2a1dnqaxFxE3BdZo7pWtER\nsVtm/rq8fSpwSmae2MIRdzbPIuCK8jKZ0qS5paB+dwXwEWBMoQAcHhHXUOxq2gic2arBdiYifh94\nhYGgZnJLQZJU44FmSVKNoSBJqjEUJEk1hoIkqcZQkCTVGAqSpJr/DwbJVH+O2CX6AAAAAElFTkSu\nQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from __future__ import division\n", "from numpy import arange,pi\n", "%matplotlib inline\n", "from matplotlib.pyplot import plot,xlabel,ylabel,show\n", "R=5*10**3#\n", "C=0.1*10**-6#\n", "f1=1/(2*pi*R*C)#\n", "print 'f1=%0.2f HZ'%f1\n", "i=arange(-21,0,3)\n", "plot(i)#\n", "xlabel(\"f (log scale)\")#\n", "ylabel( \"Av(dB)\")#\n", "show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 24.9 Pg 690" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "fLS=6.87 HZ\n", "fLC=25.67 HZ\n", "fLE=326.85 HZ\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEPCAYAAACtCNj2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGXlJREFUeJzt3Xu0nXV95/H3VzCWWNRVnBaIWXJTGahEoGXAajmVkFIH\nFYrIRXQchGnNKBSVYshaNUiDcp8xEApVQSWJQwEdIBKJ1ROsUyBGRANESSLtCSowywQNmjGY7/zx\nPGdnc9g5OZe997Mv79daWezr2d8NrHzOc/l9nshMJEkCeFHVA0iSOoehIEmqMRQkSTWGgiSpxlCQ\nJNUYCpKkmo4MhYg4LiLWRMRjEXFB1fNIUr+ITlunEBG7AD8EZgJPACuB0zLz0UoHk6Q+0IlbCkcA\nazPz8czcCnwJeEfFM0lSX+jEUJgGDNXd31A+JklqsU4Mhc7anyVJfWTXqgdo4Alget396RRbCzUR\nYXBI0gRkZoz2fCduKXwHeE1E7BMRU4BTgDtGvigze/bPxz/+8cpn8Pv5/frx+/Xyd8sc2+/SHbel\nkJnPRcQHga8BuwCfTc88kqS26LhQAMjMu4G7q55DkvpNJ+4+6nsDAwNVj9BSfr/u1svfr5e/21h1\n3OK1sYiI7Ma5JalKEUF24YFmSVJFDAVJUo2hIEmqMRQkSTWGgiSpxlCQJNUYCpKkGkNBklRjKEiS\nagwFSVKNoSBJqjEUJEk1hoIkqcZQkCTVGAqSpBpDQZJUYyhIkmoMBUlSjaEgSaoxFCSpD4z1svaG\ngiT1sG3b4NZb4fDDx/Z6Q0GSetDWrfCFL8DBB8Pll8O8eWN7364tnUqS1FZbtsBNN8Gll8I++8CC\nBXDMMRAxtvcbCpLUAzZvhhtugCuvhDe8ARYtgje+cfw/x1CQpC62aVOxNbBgAQwMwNKlRShMlMcU\nJKkLPfUUzJkD++8P69bBvffCLbdMLhDAUJCkrjI0BOeeCwceCM88A6tWFccQDjywOT/fUJCkLrB2\nLZx1FsyYAVOmwMMPw8KFxcHkZjIUJKmDrV4Np58ORx0F06bBY48Vp5jutVdrPs9QkKQOtHIlnHAC\nzJxZbB2sWwcXXQR77NHaz/XsI0nqEJnFAeP582HNGjj/fFi8GKZObd8MhoIkVSwT7r4bLrkEnnyy\nOKvojDOKYwftZihIUkW2bYPbby/C4Lnn4MIL4eSTYZddqpvJUJCkNtu6FZYsgU9+El72sqKX6Pjj\n4UUdcJS340IhIuYBZwFPlw/Nycxl1U0kSc0x2V6idui4UAASuCozr6p6EElqhmefheuvn3wvUTt0\nYigAdFBuStLEbNoE11xTbBEcffTke4naoQP2YDX0oYh4KCI+GxGvqHoYSRqP+l6itWthxYrm9BK1\nQyVbChGxHNizwVNzgeuAT5T3LwauBN4/8oXz6q4YMTAwwMDAQLPHlKRx2bChWG38xS/CqacWvUTN\nrqEYj8HBQQYHB8f1nsixXrizAhGxD3BnZr5+xOPZyXNL6i9r1xYHj2+/Hc48Ez784dbVUExGRJCZ\no+6e77jdRxFR/6/yROAHVc0iSaNZvRre/e6il2jvveFHP2ptL1E7dOKB5ksj4g0UZyH9GPiriueR\npOdZubKoorjvPjjvPLjuumK9QS/o6N1HO+LuI0nt1qiX6KyzYLfdqp5s7May+6gTtxQkqWNkwrJl\nRRhU3UvUDoaCJDXQib1E7WAoSFKdTu4lagdDQZLY3kt02WXw6ld3Zi9ROxgKkvrayF6im2/u3F6i\ndjAUJPWlbuwlaoc+2UsmSYVu7iVqB0NBUl/YsAHOPRcOPBB+8Yuil+imm4r72s5QkNTT1q6Fs8+G\nGTOKtQUPPwzXXlttUV0nMxQk9aRe7CVqB0NBUk9ZuRJOOAFmzoRDDoF16+Cii2CPPaqerDt49pGk\nrteol2jJku7qJeoUhoKkrpUJd99dVFH0Qy9ROxgKkrpOv/YStYOhIKlr9HsvUTsYCpI63nAv0aWX\nFqeS9msvUTsYCpI61ubNcMMN23uJFi3q716idjAUJHWcTZuKrYEFC2BgwF6idnJPnKSOUd9LtG5d\ncZqpvUTtZShIqtzQ0PZeomeesZeoSoaCpMqsXQtnnfX8XqKFC+0lqpKhIKntVq+G008veommTYPH\nHrOXqFMYCpLapr6XaMYMe4k6kWcfSWqpRr1EixfD1KlVT6ZGDAVJLWEvUXcyFCQ1lb1E3c1QkNQU\n9hL1BkNB0qRs2QI33giXXWYvUS8wFCRNyObNcP31cNVV9hL1EkNB0rhs3AjXXGMvUa9yb5+kMRnu\nJTrgAHuJepmhIGlUQ0Nwzjn2EvULQ0FSQ/W9RC95ib1E/cJQkPQ8w71ERx5pL1E/MhQkAS/sJVq/\n3l6iflRJKETEyRHxcET8NiIOG/HcnIh4LCLWRMSsKuaT+kUmDA7CrFlw0knF+oL16+GCC4oFaOo/\nVZ2S+gPgROD6+gcj4iDgFOAgYBrw9Yh4bWZua/+IUu8a7iWaP3/7WUX2EgkqCoXMXAMQL1zy+A5g\nSWZuBR6PiLXAEcB97Z1Q6k32EmlnOm3x2t48PwA2UGwxSJoEe4k0Vi0LhYhYDuzZ4KkLM/POcfyo\nbNJIUt+xl0jj1bJQyMxjJ/C2J4DpdfdfVT72AvPmzavdHhgYYGBgYAIfJ/Ume4kEMDg4yODg4Lje\nE5nV/SIeEd8EPpqZq8r7BwGLKY4jTAO+DhyQI4aMiJEPSeKFvURz5sChh1Y9lTpFRJCZo24nVnVK\n6okRMQQcCSyNiLsBMvMR4BbgEeBuYLZ/+0s7t6NeIgNB41XplsJEuaUgFYaGitXGN98Mp54Kf/u3\n1lBoxzp2S0HS5NT3Ek2ZYi+RmsdQkLpIo16iK66wl0jNYyhIXcBeIrVLpy1ek1TKhBUritXHa9bA\n+efD4sUwdWrVk6mXjSkUIuI/AvsA24B/G66pkNR8I3uJPvYxeM977CVSe+wwFCJiX+A84K0UC8h+\nAgSwV0S8CrgLuDozH2/DnFLPs5dInWCHp6RGxC3APwKDZUFd/XMvBv4MOCsz39XyKV84m6ekqmeM\n7CWaO9deIrXGWE5JdZ2CVJGRvURz59pLpNYaSyiMekwhIl4NPJuZ/zcijgLeBKzNzC83cU6pr9hL\npE422jGFvwP+S3l7CTATGATeGhEDmXluWyaUesSmTUUn0XAv0V13WUOhzjPalsJpFFdAmwr8O7Bn\nZj4bEbsCD7VjOKkXPPUUXH013HADvO1tRS/RgQdWPZXU2GiHsrZk5v/LzI0Uu4yeBcjM54DftGU6\nqYsNDcE55xQB8MwzsGoV3HSTgaDONtqWwssj4i8pTkMdvs3w/ZZPJnWptWvhU58qTi8988yil8ga\nCnWL0ULhXuBtDW4DrGjZRFKXWr26WGOwfDnMnl30EllDoW7jKanSJK1cWaw+vu8+OO88+MAHivUG\nUqeZ1CmpEfERRrk+cmZeNYnZpK6WWRwwnj/fXiL1ltF2H+1OEQqvA/4YuIPieMLxwAOtH03qPMO9\nRJdcAk8+aS+Res9Odx9FxLeAt2bmL8v7uwNfzcw3t2G+Hc3k7iO1VX0v0dat23uJdrVnWF1k0iua\nS78P1HcfbS0fk3reyF6iefPsJVJvG0sofAF4ICJup9h9dALw+ZZOJVVsy5ZiTcGllxa9RAsW2Euk\n/jCms48i4nDgzRTHGO7NzAdbPdhO5nH3kVpiZC/R3Ln2Eql3TPbso92HjyNk5ipg1WivkbqZvURS\nYbTdR1+OiB8C/xv4Tmb+HCAifo/ibKQTgNdQFOVJXcleIun5dni4LDNnArcB7wK+HRHPRMQzwLeB\ndwL/q3yN1HXsJZIaG/VAc2Z+A/hGm2aRWs5eIml0Oz2xLiLujIjTI+Kl7RhIaoXVq+H00+HII2Hv\nvYteoiuuMBCkkcZytvWVFGcePRIRt0XEOyPid1o8l9QUK1fCCSfAzJkwYwasXw+f+IRFddKOjLkQ\nr7y4zp8BZwPHZWZllV+ekqrRNOolev/77SWSmrWimYjYDXg7xUHnw3DxmjqQvUTS5O00FCLiFuA/\nAcuAa4HngFNbPJc0ZvYSSc0zlkK8Pwc2UmwlnAz8GLgtMxe0frwdzuTuI72gl2juXHuJpNFMdkXz\n64DTgFOAp4F/ogiRgWYOKY2XvURS64y2gf0ocBfw55n57wAR8eG2TCU1sHlzsfL4yiuLXqJFi+wl\nkppttA3tvwR+DdwbEf8QEcdQtKRKbbVpE1x8Mey3X3HJy7vugqVLDQSpFUarufhKZp4C/CHwLeA8\n4D9ExHURMatdA6p/PfUUzJkD++8P69YVp5necotFdVIr7fSQXGZuzsxFmXk8MB14EPhYyydT3xoa\ngnPPtZdIqsK4ztPIzJ9n5g2Z+ZbJfGhEnBwRD0fEbyPisLrH94mIX0fEg+WfhZP5HHWXtWvhrLOK\nlccvfnHRS7RwYXEwWVJ7VHUm9w+AE4HrGzy3NjPdQdBHVq8u1hjccw/Mnl30EllDIVWjkjO6M3NN\nZv6ois9W56jvJTrkEHuJpE7Qict89i13HQ1GxJuqHkbNlQkrVsCsWXDSScX6gvXri0qKl1XWpiVp\nWMt2H0XEcmDPBk9dmJl37uBtPwGmZ+bG8ljDVyLiYC/52f0yYdmyoqTOXiKpc7UsFDLz2Am85zfA\nb8rb342IdRSX/PzuyNfOmzevdntgYICBgYGJjqoWspdIqs7g4CCDg4Pjes+Yq7NbISK+CXw0M1eV\n918JbMzM30bEfsC9wB9m5qYR77P7qMPZSyR1nqZVZzdbRJwIfBp4JbA0Ih7MzL8AjgYuioitwDbg\nr0YGgjqbvURSd6t0S2Gi3FLoPCN7iebOtYZC6jQdu6Wg3rFpU7E1sGABDAwUvUTWUEjdyz28mhB7\niaTeZChoXIaG4Jxz7CWSepWhoDGp7yWaMsVeIqlXGQoa1erVcPrpcNRRMG1a0Ut0xRWw115VTyap\nFQwFNVTfSzRjRnHc4KKL7CWSep1nH6kmszhgPH8+rFkD558PixfD1KlVTyapXQwFkQl3311UUdhL\nJPU3Q6GP1fcSPffc9l6iXXapejJJVTEU+tDIXqJ58+wlklQwFPqIvUSSdsZQ6AObN8P118NVVxW9\nRIsW2UskqTFDoYeN7CVaurQIBUnaEfci96Ad9RIZCJJ2xlDoIfW9RL/4hb1EksbPUOgB9b1EL3lJ\n0Ut07bX2EkkaP0Ohiw33Eh155PZeossvt5dI0sQZCl1oZC/R+vX2EklqDs8+6hKZsGJFsfp4uJdo\nyRLYbbeqJ5PUSwyFDjfcSzR/Pjz9dNFLdMYZ9hJJag1DoUPZSySpCoZCh7GXSFKVDIUOsWUL3Hgj\nXHaZvUSSqmMoVKy+l+jQQ4uL2hx1VNVTSepXhkJFNm6Ea66xl0hSZ3FPdZsN9xIdcIC9RJI6j6HQ\nJvYSSeoGhkKL2UskqZsYCi0y3Et01FH2EknqHoZCk43sJVq3zl4iSd3Ds4+aILM4YDx/vr1Ekrqb\noTAJw71El1xSnFVkL5GkbmcoTIC9RJJ6laEwDvYSSep1hsIYbNlSrCm49FLYd99iJfJb3mIvkaTe\nYyiMwl4iSf2mkh0fEXF5RDwaEQ9FxO0R8fK65+ZExGMRsSYiZlUx36ZNcPHFsN9+cP/9RS/RXXcZ\nCJJ6X1V7w+8BDs7MGcCPgDkAEXEQcApwEHAcsDAi2jbjcC/R/vvbSySpP1USCpm5PDO3lXfvB15V\n3n4HsCQzt2bm48Ba4IhWzzM0BOeeay+RJHXCeTNnAl8tb+8NbKh7bgMwrVUfXN9LNGWKvUSS1LID\nzRGxHNizwVMXZuad5WvmAr/JzMWj/Khs9OC8efNqtwcGBhgYGBjzbKtXF2sMli+H2bOLXiJrKCT1\nmsHBQQYHB8f1nshs+Hduy0XE+4CzgWMyc0v52McAMvNT5f1lwMcz8/4R782JzL1yZVFFcd99cN55\n8IEPFOsNJKkfRASZOerJ9FWdfXQccD7wjuFAKN0BnBoRUyJiX+A1wAOT+axMWLECZs2Ck04qrnv8\n4x/DBRcYCJI0UlXrFBYAU4DlUawA+9fMnJ2Zj0TELcAjwHPA7AltEmAvkSRNRGW7jyZjtN1H9hJJ\nUmNj2X3UMyua7SWSpMnr+lCwl0iSmqdrQ+HZZ4teoiuvtJdIkpqla0Nhv/3g6KOLXiJrKCSpObr2\nQPOjj6Y1FJI0DmM50Ny1odCNc0tSlTp28ZokqTMZCpKkGkNBklRjKEiSagwFSVKNoSBJqjEUJEk1\nhoIkqcZQkCTVGAqSpBpDQZJUYyhIkmoMBUlSjaEgSaoxFCRJNYaCJKnGUJAk1RgKkqQaQ0GSVGMo\nSJJqDAVJUo2hIEmqMRQkSTWGgiSpxlCQJNUYCpKkGkNBklRjKEiSagwFSVJNJaEQEZdHxKMR8VBE\n3B4RLy8f3ycifh0RD5Z/FlYxnyT1q6q2FO4BDs7MGcCPgDl1z63NzEPLP7OrGa9ag4ODVY/QUn6/\n7tbL36+Xv9tYVRIKmbk8M7eVd+8HXlXFHJ2q1//H9Pt1t17+fr383caqE44pnAl8te7+vuWuo8GI\neFNVQ0lSP9q1VT84IpYDezZ46sLMvLN8zVzgN5m5uHzuJ8D0zNwYEYcBX4mIgzPzl62aU5K0XWRm\nNR8c8T7gbOCYzNyyg9d8E/hIZn53xOPVDC1JXS4zY7TnW7alMJqIOA44Hzi6PhAi4pXAxsz8bUTs\nB7wGWD/y/Tv7UpKkialkSyEiHgOmAD8vH/rXzJwdEScBFwFbgW3A32Xm0rYPKEl9qrLdR5KkztMJ\nZx+NS0QcFxFrIuKxiLig6nmaKSI+FxFPRsQPqp6lFSJiekR8MyIejojVEXFO1TM1S0T8TkTcHxHf\ni4hHIuKTVc/UChGxS3l24J1Vz9JsEfF4RHy//H4PVD1Ps0XEKyLi1nLh8CMRcWTD13XTlkJE7AL8\nEJgJPAGsBE7LzEcrHaxJIuLNwGbgC5n5+qrnabaI2BPYMzO/FxG/C6wCTuih/35TM/NXEbEr8C/A\nRzPzX6qeq5ki4sPA4cDumfn2qudppoj4MXB4Zv58py/uQhHxeWBFZn6u/H/0pZn5zMjXdduWwhEU\nK54fz8ytwJeAd1Q8U9Nk5reAjVXP0SqZ+bPM/F55ezPwKLB3tVM1T2b+qrw5BdiF7cfMekJEvAp4\nK/AZoFdP9ujJ71VWCb05Mz8HkJnPNQoE6L5QmAYM1d3fUD6mLhMR+wCHUqxo7wkR8aKI+B7wJPDN\nzHyk6pma7GqKswa37eyFXSqBr0fEdyLi7KqHabJ9gacj4saI+G5E/GNETG30wm4Lhe7Z16UdKncd\n3QqcW24x9ITM3JaZb6CobfnTiBioeKSmiYjjgacy80F69Ldp4E8y81DgL4D/Xu7O7RW7AocBCzPz\nMOBZ4GONXthtofAEML3u/nSKrQV1iYh4MXAbcHNmfqXqeVqh3CxfCvxR1bM00RuBt5f73ZcAb4mI\nL1Q8U1Nl5k/Lfz4NfJlid3Wv2ABsyMyV5f1bKULiBbotFL4DvKas2J4CnALcUfFMGqOICOCzwCOZ\n+T+qnqeZIuKVEfGK8vZuwLHAg9VO1TyZeWFmTs/MfYFTgW9k5nurnqtZImJqROxe3n4pMAvombMA\nM/NnwFBEvLZ8aCbwcKPXVrKieaIy87mI+CDwNYoDeZ/tlTNXACJiCXA0sEdEDFEs3rux4rGa6U+A\nM4DvR8TwX5hzMnNZhTM1y17A5yPiRRS/bH0xM/+54plaqdd25f4B8OXi9xZ2BRZl5j3VjtR0HwIW\nlb9QrwP+a6MXddUpqZKk1uq23UeSpBYyFCRJNYaCJKnGUJAk1RgKkqQaQ0GSVGMoqOdFxDllVfAX\nGzz3+oj4XHn7fRGxoP0TvlC5QHPUxVMR8QcR8dV2zaT+0FWL16QJ+gDFtcB/0uC584HhIOiqRTuZ\n+WREbIyIw0Zex1yaKLcU1NMi4h+A/YBlEfE3I557CXBkXR9M/XP7RMQ3IuKhiPh6REwvH98/Iu4r\nL8by9xHxywbvfWlELC0vuPODiHhX+fgfR8S3y8fvj4jfLT/n3ohYVf45qsHP2yUiLo+IB8p5/lvd\n03cAp03qX5JUx1BQT8vMvwZ+Agw06Fs6lOKiTY0sAG7MzBnAIuDT5eP/E7g6Mw/h+TXu9Y4DnsjM\nN5QXS1pWVgt8CTinbFI9Bvg1Rc32sZl5OEWn0Kcb/Lz3A5sy8wiKkrazy+pxgAeAP93R95fGy1BQ\nP3s18NMdPHcksLi8fTPwprrH/6m8vWQH7/0+cGxEfCoi3pSZvwBeB/w0M1dBcZGhzPwtxQV5PhMR\n3wduAQ5q8PNmAe8t+6LuA34POKB87qfAPjv7otJYeUxB/SwZ/doAE7puQGY+FhGHAv8Z+PuI+GeK\nKuZGzqMIi/eUl5vdsoPXfTAzl+9gxq46FqLO5paC+tm/AXvW3a8Pgf9DsTsH4N3AveXt+4B3lrdP\npYGI2AvYkpmLgCvYvptqr4j4o/I1u5ch8DLgZ+Vb30vR/jvS14DZ5XV1iYjX1l01a6/ye0hN4ZaC\n+sGOfpN+iGK3Tv3rhl/7IeDGiDgfeIrtNcN/A9wcERdS/GXd6Dq3rwcuj4htwFbgrzNza0ScAiwo\nr7fwK4pO+4XAbRHxXmAZUH8luuFZPkOxi+i75TUpngJOKJ87gu2BJU2a1dnqaxFxE3BdZo7pWtER\nsVtm/rq8fSpwSmae2MIRdzbPIuCK8jKZ0qS5paB+dwXwEWBMoQAcHhHXUOxq2gic2arBdiYifh94\nhYGgZnJLQZJU44FmSVKNoSBJqjEUJEk1hoIkqcZQkCTVGAqSpJr/DwbJVH+O2CX6AAAAAElFTkSu\nQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from __future__ import division\n", "from numpy import arange,pi\n", "%matplotlib inline\n", "from matplotlib.pyplot import plot,xlabel,ylabel,show\n", "\n", "\n", "RC=4*10**3#\n", "R1=40*10**3#\n", "R2=10*10**3#\n", "RE=2*10**3#\n", "RS=1*10**3#\n", "RL=2.2*10**3#\n", "CS=10*10**-6#\n", "CE=20*10**-6#\n", "CC=1*10**-6#\n", "B=100#\n", "VCC=20#\n", "VB=(R2*VCC)/(R2+R1)#\n", "IE=(VB-0.7)/RE#\n", "re=(26*10**-3)/IE#\n", "B*re#\n", "vo=-(RC*RL)/(RC+RL)#\n", "Av=vo/re#\n", "a=(R1*R2)/(R1+R2)#\n", "Ri=(a*(B*re))/(a+(B*re))#\n", "Rs=1*10**3#\n", "vibyvs=Ri/(Ri+Rs)#\n", "Avs=Av*vibyvs#\n", "a=(R1*R2)/(R1+R2)#\n", "Ri=(a*(B*re))/(a+(B*re))#\n", "fLS=1/(2*pi*(Rs+Ri)*CS)#\n", "print 'fLS=%0.2f HZ'%fLS\n", "fLC=1/(2*pi*(RC+RL)*CC)#\n", "print 'fLC=%0.2f HZ'%fLC\n", "a=(R1*R2)/(R1+R2)#\n", "RS=(a*RS)/(a+RS)#\n", "b=(RS/B+re)#\n", "Re=(RE*b)/(RE+b)#\n", "fLE=1/(2*pi*Re*CE)#\n", "print 'fLE=%0.2f HZ'%fLE\n", "i=arange(-21,0,3)\n", "plot(i)#\n", "xlabel(\"f (log scale)\")#\n", "ylabel( \"Av(dB)\")#\n", "show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }