{ "metadata": { "name": "", "signature": "sha256:5cdc0313c39e461d83bef4f404708f38e979d4c9312a95284be2bd9b855678fb" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter4-Electron Ballistics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg44" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "##Example 4.1\n", "##Calculation of acceleration,time taken,distance covered and kinetic energy of an accelerating proton\n", "\n", "##given values\n", "m=1.67 *10**-27;##mass of proton in kg\n", "q=1.602 *10**-19;##charge of proton in Coulomb\n", "v1=0;##initial velocity in m/s\n", "v2=2.5*10**6;##final velocity in m/s\n", "E=500.;##electric field strength in V/m\n", "##calculation\n", "a=E*q/m;##acceleration\n", "print'%s %.1f %s'%('acceleration of proton in (m/s^2) is:',a,'');\n", "t=v2/a;##time\n", "print'%s %.5f %s'%('time(in s) taken by proton to reach the final velocity is:',t,'');\n", "x=a*t**2./2.;##distance\n", "print'%s %.1f %s'%('distance (in m)covered by proton in this time is:',x,'');\n", "KE=E*q*x;##kinetic energy\n", "print'%s %.3e %s'%('kinetic energy(in J) at the time is:',KE,'');\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "acceleration of proton in (m/s^2) is: 47964071856.3 \n", "time(in s) taken by proton to reach the final velocity is: 0.00005 \n", "distance (in m)covered by proton in this time is: 65.2 \n", "kinetic energy(in J) at the time is: 5.219e-15 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg49" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 4.2\n", "##electrostatic deflection\n", "##given values\n", "pi=3.141\n", "V1=2000.;##in volts,potential difference through which electron beam is accelerated\n", "l=.04;##length of rectangular plates\n", "d=.015;##distance between plates\n", "V=50.;##potential difference between plates\n", "##calculations\n", "alpha=math.atan(l*V/(2.*d*V1))*(180./pi);##in degrees\n", "print'%s %.1f %s'%('angle of deflection of electron beam is:',alpha,'')\n", "v=5.93*(10**5)*math.sqrt(V1);##horizontal velocity in m/s\n", "t=l/v;##in s\n", "print'%s %.3e %s'%('transit time through electric field is:',t,'')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "angle of deflection of electron beam is: 1.9 \n", "transit time through electric field is: 1.508e-09 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg50" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 4.3\n", "##electron projected at an angle into a uniform electric field\n", "##given values\n", "v1=4.5*10**5;##initial speed in m/s\n", "alpha=37*math.pi/180.;##angle of projection in degrees\n", "E=200.;##electric field intensity in N/C\n", "e=1.6*10**-19;##in C\n", "m=9.1*10**-31;##in kg\n", "a=e*E/m;##acceleration in m/s**2\n", "t=2*v1*math.sin(alpha)/a;##time in s\n", "print'%s %.2e %s'%('time taken by electron to return to its initial level is:',t,'')\n", "H=(v1**2.*math.sin(alpha)*math.sin(alpha))/(2.*a);##height in m\n", "print'%s %.4f %s'%('maximum height reached by electron is:',H,'')\n", "s=(v1**2.)*(2.*math.sin(alpha)*math.cos(alpha))/(2.*a);##print'%s %.1f %s'%lacement in m\n", "print'%s %.4f %s'%('horizontal displacement(in m)when it reaches maximum height is:',s,'')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "time taken by electron to return to its initial level is: 1.54e-08 \n", "maximum height reached by electron is: 0.0010 \n", "horizontal displacement(in m)when it reaches maximum height is: 0.0028 \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg53" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 4.4\n", "##motion of an electron in a uniform magnetic field\n", "##given values\n", "V=200.;##potential difference through which electron is accelerated in volts\n", "B=0.01;##magnetic field in wb/m**2\n", "e=1.6*10**-19;##in C\n", "m=9.1*10**-31;##in kg\n", "v=math.sqrt(2.*e*V/m);##electron velocity in m/s\n", "print'%s %.1f %s'%('electron velocity is:',v,'')\n", "r=m*v/(e*B);##in m\n", "print'%s %.4f %s'%('radius of path (in m)is:',r,'')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "electron velocity is: 8386278.7 \n", "radius of path (in m)is: 0.0048 \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg54" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 4.5\n", "##motion of an electron in a uniform magnetic field acting at an angle\n", "##given values\n", "v=3*10**7;##electron speed\n", "B=.23;##magnetic field in wb/m**2\n", "q=45*math.pi/180;##in degrees,angle in which electron enter field\n", "e=1.6*10**-19;##in C\n", "m=9.1*10**-31;##in kg\n", "R=m*v*math.sin(q)/(e*B);##in m\n", "print'%s %.5f %s'%('radius of helical path is:',R,'')\n", "p=2*math.pi*m*v*math.cos(q)/(e*B);##in m\n", "print'%s %.4f %s'%('pitch of helical path(in m) is:',p,'')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "radius of helical path is: 0.00052 \n", "pitch of helical path(in m) is: 0.0033 \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg55" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 4.6\n", "##Magnetostatic deflection\n", "##given values\n", "D=.03;##deflection in m\n", "m=9.1*10**-31;##in kg\n", "e=1.6*10**-19;##in C\n", "L=.15;##distance between CRT and anode in m\n", "l=L/2.;\n", "V=2000.;##in voltsin wb/\n", "B=D*math.sqrt(2.*m*V)/(L*l*math.sqrt(e));##in wb/m**2\n", "print'%s %.4f %s'%('transverse magnetic field acting (in wb/m^2)is:',B,'')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "transverse magnetic field acting (in wb/m^2)is: 0.0004 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg57" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 4.7\n", "##electric and magnetic fields in crossed configuration\n", "##given values\n", "B=2*10**-3;##magnetic field in wb/m**2\n", "E=3.4*10**4;##electric field in V/m\n", "m=9.1*10**-31;##in kg\n", "e=1.6*10**-19;##in C\n", "v=E/B;##in m/s\n", "print'%s %.1f %s'%('electron speed is:',v,'')\n", "R=m*v/(e*B);##in m\n", "print'%s %.3f %s'%('radius of circular path (in m) when electric field is switched off',R,'')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "electron speed is: 17000000.0 \n", "radius of circular path (in m) when electric field is switched off 0.048 \n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }