{ "metadata": { "name": "", "signature": "sha256:1cf24b70876a8aeb6aa008651e71d8cde215c5cbb4fe65495bcd461a3cc2b49b" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter24-Fibre Optics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg701" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 24.1\n", "##Fiber optics\n", "\n", "##given values\n", "n=1.5;##refractive index\n", "x=.0005;##fractional index difference\n", "\n", "##calculation\n", "u=n*(1-x);\n", "print'%s %.2f %s'%('cladding index is',u,'');\n", "alpha=math.asin(u/n)*180/math.pi;\n", "print'%s %.2f %s'%('critical internal reflection angle(in degree) is',alpha,'');\n", "theta=math.asin(math.sqrt(n**2-u**2))*180/math.pi;\n", "print'%s %.2f %s'%('critical acceptance angle(in degree) is',theta,'');\n", "N=n*math.sqrt(2.*x);\n", "print'%s %.2f %s'%('numerical aperture is',N,'');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "cladding index is 1.50 \n", "critical internal reflection angle(in degree) is 88.19 \n", "critical acceptance angle(in degree) is 2.72 \n", "numerical aperture is 0.05 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg701" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 24.2\n", "##calculation of acceptance angle\n", "\n", "##given values\n", "n=1.59;##cladding refractive index\n", "u=1.33;##refractive index of water\n", "N=.20;##numerical aperture offibre\n", "##calculation\n", "x=math.sqrt(N**2+n**2.);##index of fibre\n", "N1=math.sqrt(x**2-n**2.)/u;##numerical aperture when fibre is in water\n", "alpha=math.asin(N1)*180./math.pi;\n", "print'%s %.2f %s'%('acceptance angle in degree is',alpha,'');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "acceptance angle in degree is 8.65 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg705" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 24.3\n", "##calculation of normalised frequency\n", "\n", "##given values\n", "n=1.45;##core refractive index\n", "d=.6;##core diametre in m\n", "N=.16;##numerical aperture of fibre\n", "l=.9*10**-6.;##wavelength of light\n", "\n", "##calculation\n", "u=math.sqrt(n**2.+N**2.);##index of glass fibre\n", "V=math.pi*d*math.sqrt(u**2.-n**2.)/l;\n", "print'%s %.2f %s'%('normalised frequency is',V,'');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "normalised frequency is 335103.22 \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg705" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 24.4\n", "##calculation of normailsed frequency and no of modes\n", "\n", "##given values\n", "n=1.52;##core refractive index\n", "d=29*10**-6.;##core diametre in m\n", "l=1.3*10**-6.;##wavelength of light\n", "x=.0007;##fractional refractive index\n", "\n", "##calculation\n", "u=n*(1.-x);##index of glass fibre\n", "V=math.pi*d*math.sqrt(n**2-u**2)/l;\n", "print'%s %.2f %s'%('normalised frequency is',V,'');\n", "N=V**2./2.;\n", "print'%s %.2f %s'%('no of modes is',N,'');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "normalised frequency is 3.99 \n", "no of modes is 7.94 \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg706" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 24.5\n", "##calculation of numerical aperture and maximum acceptance angle\n", "\n", "##given values\n", "n=1.480;##core refractive index\n", "u=1.47;##index of glass\n", "l=850*10**-9.;##wavelength of light\n", "V=2.405;##V-number\n", "\n", "##calculation\n", "r=V*l/math.sqrt(n**2-u**2)/math.pi/2;##in m\n", "print'%s %.2f %s'%('core radius in micrometre is',r*10**6,'');\n", "N=math.sqrt(n**2-u**2);\n", "print'%s %.2f %s'%('numerical aperture is',N,'');\n", "alpha=math.asin(N)*180/math.pi;\n", "print'%s %.2f %s'%('max acceptance angle is',alpha,'');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "core radius in micrometre is 1.89 \n", "numerical aperture is 0.17 \n", "max acceptance angle is 9.89 \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg712" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 24.6\n", "##calculation of power level\n", "\n", "##given values\n", "a=3.5;##attenuation in dB/km\n", "Pi=.5*10**-3.;##initial power level in W\n", "l=4.;##length of cable in km\n", "\n", "##calculation\n", "Po=Pi*10**6./(10**(a*l/10.));\n", "print'%s %.2f %s'%('power level after km(in microwatt) is',Po,'');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "power level after km(in microwatt) is 19.91 \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg712" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 24.7\n", "##calculation of power loss\n", "\n", "##given values\n", "Pi=1*10**-3.;##initial power level in W\n", "l=.5;##length of cable in km\n", "Po=.85*Pi\n", "\n", "##calculation\n", "a=(10./l)*math.log10(Pi/Po);\n", "print'%s %.2f %s'%('loss in dB/km is',a,'');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "loss in dB/km is 1.41 \n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }