{ "metadata": { "name": "", "signature": "sha256:4021239986e9b103686ab01f7ccbdc5317b1bf2aa2e09bf052e63053a477f649" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter23-Dielectrics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg679" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 23.1\n", "##calculation of relative permittivity\n", "\n", "##given values\n", "\n", "E=1000.;##electric field in V/m\n", "P=4.3*10**-8;##polarization in C/m**2\n", "e=8.85*10**-12;##permittivity in F/m\n", "\n", "\n", "##calculation\n", "er=1.+(P/(e*E));\n", "print'%s %.2f %s'%('relative permittivity of NaCl is ',er,'');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "relative permittivity of NaCl is 5.86 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg675" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 23.2\n", "##calculation of electronic polarizability\n", "\n", "##given values\n", "\n", "e=8.85*10**-12;##permittivity in F/m\n", "er=1.0024;##relative permittivity at NTP\n", "N=2.7*10**25.;##atoms per m**3\n", "\n", "\n", "##calculation\n", "alpha=e*(er-1)/N;\n", "print'%s %.3e %s'%('electronic polarizability (in F/m^2)is ',alpha,'');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "electronic polarizability (in F/m^2)is 7.867e-40 \n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg678" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 23.3\n", "##calculation of electronic polarizability and relative permittivity\n", "\n", "##given values\n", "\n", "e=8.85*10**-12.;##permittivity in F/m\n", "N=9.8*10**26.;##atoms per m**3\n", "r=.53*10**-10.;##radius in m\n", "\n", "\n", "##calculation\n", "alpha=4*math.pi*e*r**3;\n", "print'%s %.3e %s'%('electronic polarizability (in F/m**2)is ',alpha,'');\n", "er=1+(4*math.pi*N*r**3);\n", "print'%s %.2f %s'%('relative permittivity is',er,'')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "electronic polarizability (in F/m**2)is 1.656e-41 \n", "relative permittivity is 1.00 \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg681" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 23.4\n", "##calculation of electronic polarizability and relative permittivity\n", "\n", "##given values\n", "w=32.;##atomic weight of sulphur \n", "d=2.08*10**3.;##density in kg/m**3\n", "NA=6.02*10**26.;##avogadros number\n", "alpha=3.28*10**-40.;##electronic polarizability in F.m**2\n", "e=8.854*10**-12.;##permittiviy\n", "##calculation\n", "\n", "n=NA*d/w;\n", "k=n*alpha/(3.*e);\n", "er=(1+2*k)/(1.-k);\n", "print'%s %.2f %s'%('relative permittivity is',er,'')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "relative permittivity is 3.80 \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg682" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 23.5\n", "##calculation of ionic polarizability\n", "\n", "##given values\n", "n=1.5;##refractive index\n", "er=6.75;##relative permittivity\n", "\n", "##calculation\n", "Pi=(er-n**2.)*100./(er-1.);\n", "print'%s %.2f %s'%('percentage ionic polarizability (in %)) is',Pi,'')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "percentage ionic polarizability (in %)) is 78.26 \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg685" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 23.6\n", "##calculation of frequency and phase difference\n", "\n", "##given values\n", "t=18*10**-6;##relaxation time in s\n", "\n", "##calculation\n", "f=1/(2*math.pi*t);\n", "print'%s %.2f %s'%('frequency at which real and imaginary part of complx dielectric constant are equal is',f,'');\n", "alpha=math.atan(1)*180/math.pi;## phase difference between current and voltage( 1 because real and imaginry parts are equal of the dielectric constant)\n", "print'%s %.2f %s'%('phase diffeerence (in degree) is',alpha,'');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "frequency at which real and imaginary part of complx dielectric constant are equal is 8841.94 \n", "phase diffeerence (in degree) is 45.00 " ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg692" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 23.7\n", "##calculation of frequency\n", "\n", "##given values\n", "t=5.5*10**-3.;##thickness of plate in m\n", "Y=8*10**10.;##Young's modulus in N/m**2\n", "d=2.65*10**3.;##density in kg/m**3\n", "\n", "\n", "\n", "##calculation\n", "f=math.sqrt(Y/d)/(2.*t);##in Hz\n", "print'%s %.2f %s'%('frequency of fundamental note(in KHz) is',f/10**3,'');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "frequency of fundamental note(in KHz) is 499.49 \n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }